RESUMO
Nearly all prostate cancer deaths are from metastatic castration-resistant prostate cancer (mCRPC), but there have been few whole-genome sequencing (WGS) studies of this disease state. We performed linked-read WGS on 23 mCRPC biopsy specimens and analyzed cell-free DNA sequencing data from 86 patients with mCRPC. In addition to frequent rearrangements affecting known prostate cancer genes, we observed complex rearrangements of the AR locus in most cases. Unexpectedly, these rearrangements include highly recurrent tandem duplications involving an upstream enhancer of AR in 70%-87% of cases compared with <2% of primary prostate cancers. A subset of cases displayed AR or MYC enhancer duplication in the context of a genome-wide tandem duplicator phenotype associated with CDK12 inactivation. Our findings highlight the complex genomic structure of mCRPC, nominate alterations that may inform prostate cancer treatment, and suggest that additional recurrent events in the non-coding mCRPC genome remain to be discovered.
Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Sequenciamento Completo do Genoma , Idoso , Anilidas/uso terapêutico , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Elementos Facilitadores Genéticos/genética , Duplicação Gênica , Rearranjo Gênico , Genes myc , Loci Gênicos , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , PTEN Fosfo-Hidrolase/genética , Fenótipo , Antígeno Prostático Específico/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/uso terapêuticoRESUMO
Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, ß-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.
Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Estudos de Coortes , Humanos , Masculino , Mutação , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/genética , Metástase Neoplásica/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológicoRESUMO
Inherited genetic mutations can significantly increase the risk for prostate cancer (PC), may be associated with aggressive disease and poorer outcomes, and can have hereditary cancer implications for men and their families. Germline genetic testing (hereditary cancer genetic testing) is now strongly recommended for patients with advanced/metastatic PC, particularly given the impact on targeted therapy selection or clinical trial options, with expanded National Comprehensive Cancer Network guidelines and endorsement from multiple professional societies. Furthermore, National Comprehensive Cancer Network guidelines recommend genetic testing for men with PC across the stage and risk spectrum and for unaffected men at high risk for PC based on family history to identify hereditary cancer risk. Primary care is a critical field in which providers evaluate men at an elevated risk for PC, men living with PC, and PC survivors for whom germline testing may be indicated. Therefore, there is a critical need to engage and educate primary care providers regarding the role of genetic testing and the impact of results on PC screening, treatment, and cascade testing for family members of affected men. This review highlights key aspects of genetic testing in PC, the role of clinicians, with a focus on primary care, the importance of obtaining a comprehensive family history, current germline testing guidelines, and the impact on precision PC care. With emerging evidence and guidelines, clinical pathways are needed to facilitate integrated genetic education, testing, and counseling services in appropriately selected patients. There is also a need for providers to understand the field of genetic counseling and how best to collaborate to enhance multidisciplinary patient care.
Assuntos
Predisposição Genética para Doença , Neoplasias da Próstata , Aconselhamento Genético , Testes Genéticos/métodos , Humanos , Masculino , Atenção Primária à Saúde , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapiaRESUMO
BACKGROUND: We sought to describe patterns of delivery of adjuvant (aRT) and salvage RT (sRT) in patients who underwent RP after receiving neoadjuvant androgen receptor pathway inhibitor (ARPI) before radical prostatectomy (RP) for high-risk localized prostate cancer (HRLPC). METHODS: Two hundred eighteen patients treated on phase 2 neoadjuvant trials between 2006 and 2018 at two academic centers were evaluated. aRT and sRT were defined as receipt of RT with a PSA of ≤0.1 or >0.1 ng/mL, respectively. Primary outcomes were biochemical recurrence (BCR), defined as time from aRT/sRT to a PSA rising to >0.1 ng/mL, and metastasis-free survival (MFS) after RT. RESULTS: Twenty-three (11%) and 55 (25%) patients received aRT and sRT respectively. Median PSA at start of aRT and sRT was 0.01 and 0.16 ng/mL, and median duration from RP to RT was 5 and 14 months, respectively. All aRT patients had NCCN high-risk disease, 30% were pN1 and 43% had positive surgical margins; 52% had prostate bed RT. Fifty-one percent of sRT patients had biopsy Gleason 9-10, 29% were pT2 and 9% had positive surgical margins; 63% had RT to the prostate bed/pelvis. At a median follow-up of 5.3 and 3.0 years after aRT and sRT, 3-year freedom from BCR was 55% and 47%, and 3-year MFS was 56% and 53%, respectively. CONCLUSIONS: aRT was infrequently used in patients who received neoadjuvant ARPI before RP for HRLPC. Outcomes of aRT and sRT were similar but generally poor. Studies evaluating intensified systemic therapy approaches with postoperative RT in this high-risk population are needed.
Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Próstata/patologia , Neoplasias da Próstata/patologia , Terapia Neoadjuvante , Radioterapia Adjuvante , Margens de Excisão , Prostatectomia , Adjuvantes Farmacêuticos , Terapia de Salvação , Recidiva Local de Neoplasia/cirurgia , Estudos RetrospectivosRESUMO
BACKGROUND: The PARP inhibitor (PARPi) olaparib is approved for homologous recombination repair (HRR) gene-altered metastatic castration-resistant prostate cancer (mCRPC). However, there is significant heterogeneity in response to PARPi in patients with mCRPC. Better clinical biomarkers are needed to identify patients likely to benefit from PARPi. METHODS: Patients with prostate adenocarcinoma and panel sequencing at Dana-Farber Cancer Institute were identified. Mutational signature analysis was performed using SigMA to characterize tumors as HRR deficient (HRD). The validity of SigMA to identify patients likely to benefit from olaparib was compared to the current FDA label (presence of a deleterious alteration in one of 14 HRR genes). RESULTS: 546 patients were identified, of which 34% were HRD. Among patients with HRR gene alterations, only patients with BRCA2 two-copy loss (2CL) were more likely to be HRD compared to patients without HRR gene alterations (74% vs 31%; P = 9.1 × 10-7). 28 patients with mCRPC received olaparib, of which 13 were HRD and 9 had BRCA2 2CL. SigMA improved upon the current FDA label for predicting PSA50 (sensitivity: 100% vs 90%; specificity: 83% vs 44%; PPV: 77% vs 47%; NPV: 100% vs 89%) and rPFS > 6 months (sensitivity: both 92%; specificity: 93% vs 53%; PPV: 92% vs 63%; NPV: 93% vs 89%). On multivariate analysis, incorporating prognostic clinical factors and HR gene alterations, SigMA-predicted HRD independently associated with improved PSA-PFS (HR = 0.086, p = 0.00082) and rPFS (HR = 0.078, p = 0.0070). CONCLUSIONS: SigMA-predicted HRD may better identify patients likely to benefit from olaparib as compared to the current FDA label. Larger studies are needed for further validation.
RESUMO
BACKGROUND: Patients with localized, unfavorable intermediate-risk and high-risk prostate cancer have an increased risk of relapse after radical prostatectomy (RP). The authors previously reported on part 1 of this phase 2 trial testing neoadjuvant apalutamide, abiraterone, prednisone, plus leuprolide (AAPL) or abiraterone, prednisone, and leuprolide (APL) for 6 months followed by RP. The results demonstrated favorable pathologic responses (tumor <5 mm) in 20.3% of patients (n = 24 of 118). Herein, the authors report the results of part 2. METHODS: For part 2, patients were randomized 1:1 to receive either AAPL for 12 months (arm 2A) or observation (arm 2B), stratified by neoadjuvant therapy and pathologic tumor classification. The primary end point was 3-year biochemical progression-free survival. Secondary end points included safety and testosterone recovery (>200 ng/dL). RESULTS: Overall, 82 of 118 patients (69%) enrolled in part 1 were randomized to part 2. A higher proportion of patients who were not randomized to adjuvant therapy had a favorable prostatectomy pathologic response (32.3% in nonrandomized patients compared with 17.1% in randomized patients). In the intent-to-treat analysis, the 3-year biochemical progression-free survival rate was 81% for arm 2A and 72% for arm 2B (hazard ratio, 0.81; 90% confidence interval, 0.43-1.49). Of the randomized patients, 81% had testosterone recovery in the AAPL group compared with 95% in the observation group, with a median time to recovery of <12 months in both arms. CONCLUSIONS: In this study, because 30% of patients declined adjuvant treatment, part B was underpowered to detect differences between arms. Future perioperative studies should be biomarker-directed and include strategies for investigator and patient engagement to ensure compliance with protocol procedures.
Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Leuprolida/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/diagnóstico , Antagonistas de Androgênios/efeitos adversos , Androgênios , Prednisona , Resultado do Tratamento , Recidiva Local de Neoplasia/cirurgia , Prostatectomia/métodos , TestosteronaRESUMO
BACKGROUND: Androgen deprivation therapy (ADT) in prostate cancer (PCa) has been associated with development of insulin resistance. However, the predominant site of insulin resistance remains unclear. METHODS: The ADT & Metabolism Study was a single-center, 24-week, prospective observational study that enrolled ADT-naive men without diabetes who were starting ADT for at least 24 weeks (ADT group, n = 42). The control group comprised men without diabetes with prior history of PCa who were in remission after prostatectomy (non-ADT group, n = 23). Prevalent diabetes mellitus was excluded in both groups using all three laboratory criteria defined in the American Diabetes Association guidelines. All participants were eugonadal at enrollment. The primary outcome was to elucidate the predominant site of insulin resistance (liver or skeletal muscle). Secondary outcomes included assessments of body composition, and hepatic and intramyocellular fat. Outcomes were assessed at baseline, 12, and 24 weeks. RESULTS: At 24 weeks, there was no change in hepatic (1.2; 95% confidence interval [CI], -2.10 to 4.43; p = .47) or skeletal muscle (-3.2; 95% CI, -7.07 to 0.66; p = .10) insulin resistance in the ADT group. No increase in hepatic or intramyocellular fat deposition or worsening of glucose was seen. These changes were mirrored by those observed in the non-ADT group. Men undergoing ADT gained 3.7 kg of fat mass. CONCLUSIONS: In men with PCa and no diabetes, 24 weeks of ADT did not change insulin resistance despite adverse body composition changes. These findings should be reassuring for treating physicians and for patients who are being considered for short-term ADT.
Assuntos
Antagonistas de Androgênios , Resistência à Insulina , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/uso terapêutico , Antagonistas de Androgênios/efeitos adversos , Idoso , Pessoa de Meia-Idade , Estudos Prospectivos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Composição Corporal/efeitos dos fármacos , ProstatectomiaRESUMO
Background An artificial intelligence (AI)-based method for measuring intraprostatic tumor volume based on data from MRI may provide prognostic information. Purpose To evaluate whether the total volume of intraprostatic tumor from AI-generated segmentations (VAI) provides independent prognostic information in patients with localized prostate cancer treated with radiation therapy (RT) or radical prostatectomy (RP). Materials and Methods For this retrospective, single-center study (January 2021 to August 2023), patients with cT1-3N0M0 prostate cancer who underwent MRI and were treated with RT or RP were identified. Patients who underwent RT were randomly divided into cross-validation and test RT groups. An AI segmentation algorithm was trained to delineate Prostate Imaging Reporting and Data System (PI-RADS) 3-5 lesions in the cross-validation RT group before providing segmentations for the test RT and RP groups. Cox regression models were used to evaluate the association between VAI and time to metastasis and adjusted for clinical and radiologic factors for combined RT (ie, cross-validation RT and test RT) and RP groups. Areas under the receiver operating characteristic curve (AUCs) were calculated for VAI and National Comprehensive Cancer Network (NCCN) risk categorization for prediction of 5-year metastasis (RP group) and 7-year metastasis (combined RT group). Results Overall, 732 patients were included (combined RT group, 438 patients; RP group, 294 patients). Median ages were 68 years (IQR, 62-73 years) and 61 years (IQR, 56-66 years) for the combined RT group and the RP group, respectively. VAI was associated with metastasis in the combined RT group (median follow-up, 6.9 years; adjusted hazard ratio [AHR], 1.09 per milliliter increase; 95% CI: 1.04, 1.15; P = .001) and the RP group (median follow-up, 5.5 years; AHR, 1.22; 95% CI: 1.08, 1.39; P = .001). AUCs for 7-year metastasis for the combined RT group for VAI and NCCN risk category were 0.84 (95% CI: 0.74, 0.94) and 0.74 (95% CI: 0.80, 0.98), respectively (P = .02). Five-year AUCs for the RP group for VAI and NCCN risk category were 0.89 (95% CI: 0.80, 0.98) and 0.79 (95% CI: 0.64, 0.94), respectively (P = .25). Conclusion The volume of AI-segmented lesions was an independent, prognostic factor for localized prostate cancer. © RSNA, 2024 Supplemental material is available for this article.
Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Carga Tumoral , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Prognóstico , Próstata/diagnóstico por imagem , Próstata/patologia , ProstatectomiaRESUMO
BACKGROUND: Black men consistently have higher rates of prostate cancer (PCA)- related mortality. Advances in PCA treatment, screening, and hereditary cancer assessment center around germline testing (GT). Of concern is the significant under-engagement of Black males in PCA GT, limiting the benefit of precision therapy and tailored cancer screening despite longstanding awareness of these disparities. To address these critical disparities, the Socioecological Model (SEM) was employed to develop comprehensive recommendations to overcome barriers and implement equitable strategies to engage Black males in PCA GT. METHODS: Clinical/research experts, national organization leaders, and community stakeholders spanning multiple regions in US and Africa participated in developing a framework for equity in PCA GT grounded in the SEM. A novel mixed-methods approach was employed to generate key areas to be addressed and informed statements for consensus consideration utilizing the modified Delphi model. Statements achieving strong consensus (> =75% agreement) were included in final equity frameworks addressing clinical/community engagement and research engagement. RESULTS: All societal levels of the SEM (interpersonal, institutional, community, and policy/advocacy) must deliver information about PCA GT to Black males that address benefits/limitations, clinical impact, hereditary cancer implications, with acknowledgment of mistrust (mean scores [MS] 4.57-5.00). Interpersonal strategies for information delivery included engagement of family/friends/peers/Black role models to improve education/awareness and overcome mistrust (MS 4.65-5.00). Institutional strategies included diversifying clinical, research, and educational programs and integrating community liaisons into healthcare institutions (MS 4.57-5.00). Community strategies included partnerships with healthcare institutions and visibility of healthcare providers/researchers at community events (MS 4.65-4.91). Policy/advocacy included improving partnerships between advocacy and healthcare/community organizations while protecting patient benefits (MS 4.57-5.00). Media strategies were endorsed for the first time at every level (MS 4.56-5.00). CONCLUSION: The SEM-based equity frameworks proposed provide the first multidisciplinary strategies dedicated to increase engagement of Black males in PCA GT, which are critical to reduce disparities in PCA-mortality through informing tailored screening, targeted therapy, and cascade testing in families.
Assuntos
População Negra , Testes Genéticos , Disparidades em Assistência à Saúde , Neoplasias da Próstata , Humanos , Masculino , África/etnologia , Negro ou Afro-Americano , Técnica Delphi , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Estados UnidosRESUMO
BACKGROUND: PARP (poly(ADP-ribose) polymerase) inhibitors (PARPi) are now standard of care in metastatic castrate-resistant prostate cancer (mCRPC) patients with select mutations in DNA damage repair (DDR) pathways, but patients with ATM- and BRCA2 mutations may respond differently to PARPi. We hypothesized that differences may also exist in response to taxanes, which may inform treatment sequencing decisions. METHODS: mCRPC patients (N = 158) with deleterious ATM or BRCA2 mutations who received taxanes, PARPi, or both were retrospectively identified from 11 US academic centers. Demographic, treatment, and survival data were collected. Kaplan-Meier analyses were performed and Cox hazard ratios (HR) were calculated for progression-free survival (PFS) as well as overall survival (OS), from time of first taxane or PARPi therapy. RESULTS: Fifty-eight patients with ATM mutations and 100 with BRCA2 mutations were identified. Fourty-four (76%) patients with ATM mutations received taxane only or taxane before PARPi, while 14 (24%) received PARPi only or PARPi before taxane. Patients with ATM mutations had longer PFS when taxane was given first versus PARPi given first (HR: 0.74 [95% confidence interval [CI]: 0.37-1.50]; p = 0.40). Similarly, OS was longer in patients with ATM mutations who received taxane first (HR: 0.56 [CI: 0.20-1.54]; p = 0.26). Among patients with BRCA2 mutations, 51 (51%) received taxane first and 49 (49%) received PARPi first. In contrast, patients with BRCA2 mutations had longer PFS when PARPi was given first versus taxane given first (HR: 0.85 [CI: 0.54-1.35]; p = 0.49). Similarly, OS was longer in patients with BRCA2 mutations who received PARPi first (HR: 0.75 [CI: 0.41-1.37]; p = 0.35). CONCLUSIONS: Our retrospective data suggest differential response between ATM and BRCA2 mutated prostate cancers in terms of response to PARPi and to taxane chemotherapy. When considering the sequence of PARPi versus taxane chemotherapy for mCRPC with DDR mutations, ATM, and BRCA2 mutation status may be helpful in guiding choice of initial therapy.
Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Estudos Retrospectivos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Resultado do Tratamento , Taxoides/uso terapêutico , Proteína BRCA2/genética , Proteínas Mutadas de Ataxia Telangiectasia/genéticaRESUMO
BACKGROUND: Primary and metastatic prostate cancers have low mutation rates and recurrent alterations in a small set of genes, enabling targeted sequencing of prostate cancer-associated genes as an efficient approach to characterizing patient samples (compared to whole-exome and whole-genome sequencing). For example, targeted sequencing provides a flexible, rapid, and cost-effective method for genomic assessment of patient-derived cell lines to evaluate fidelity to initial patient tumor samples. METHODS: We developed a prostate cancer-specific targeted next-generation sequencing (NGS) panel to detect alterations in 62 prostate cancer-associated genes as well as recurring gene fusions with ETS family members, representing the majority of common alterations in prostate cancer. We tested this panel on primary prostate cancer tissues and blood biopsies from patients with metastatic prostate cancer. We generated patient-derived cell lines from primary prostate cancers using conditional reprogramming methods and applied targeted sequencing to evaluate the fidelity of these cell lines to the original patient tumors. RESULTS: The prostate cancer-specific panel identified biologically and clinically relevant alterations, including point mutations in driver oncogenes and ETS family fusion genes, in tumor tissues from 29 radical prostatectomy samples. The targeted panel also identified genomic alterations in cell-free DNA and circulating tumor cells (CTCs) from patients with metastatic prostate cancer, and in standard prostate cancer cell lines. We used the targeted panel to sequence our set of patient-derived cell lines; however, no prostate cancer-specific mutations were identified in the tumor-derived cell lines, suggesting preferential outgrowth of normal prostate epithelial cells. CONCLUSIONS: We evaluated a prostate cancer-specific targeted NGS panel to detect common and clinically relevant alterations (including ETS family gene fusions) in prostate cancer. The panel detected driver mutations in a diverse set of clinical samples of prostate cancer, including fresh-frozen tumors, cell-free DNA, CTCs, and cell lines. Targeted sequencing of patient-derived cell lines highlights the challenge of deriving cell lines from primary prostate cancers and the importance of genomic characterization to credential candidate cell lines. Our study supports that a prostate cancer-specific targeted sequencing panel provides an efficient, clinically feasible approach to identify genetic alterations across a spectrum of prostate cancer samples and cell lines.
Assuntos
Ácidos Nucleicos Livres , Neoplasias da Próstata , Linhagem Celular , Credenciamento , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Masculino , Mutação , Neoplasias da Próstata/genéticaRESUMO
BACKGROUND: B7 homolog 3 (B7-H3) is an immunomodulatory molecule that is highly expressed in prostate cancer (PCa) and belongs to the B7 superfamily, which includes PD-L1. Immunotherapies (antibodies, antibody-drug conjugates, and chimeric antigen receptor T cells) targeting B7-H3 are currently in clinical trials; therefore, elucidating the molecular and immune microenvironment correlates of B7-H3 expression may help to guide trial design and interpretation. The authors tested the interconnected hypotheses that B7-H3 expression is associated with genetic racial ancestry, immune cell composition, and androgen receptor signaling in PCa. METHODS: An automated, clinical-grade immunohistochemistry assay was developed by to digitally quantify B7-H3 protein expression across 2 racially diverse cohorts of primary PCa (1 with previously reported transcriptomic data) and pretreatment and posttreatment PCa tissues from a trial of intensive neoadjuvant hormonal therapy. RESULTS: B7-H3 protein expression was significantly lower in self-identified Black patients and was inversely correlated with the percentage African ancestry. This association with race was independent of the significant association of B7-H3 protein expression with ERG/ETS and PTEN status. B7-H3 messenger RNA expression, but not B7-H3 protein expression, was significantly correlated with regulatory (FOXP3-positive) T-cell density. Finally, androgen receptor activity scores were significantly correlated with B7-H3 messenger RNA expression, and neoadjuvant intensive hormonal therapy was associated with a significant decrease in B7-H3 protein expression. CONCLUSIONS: The current data underscore the importance of studying racially and molecularly diverse PCa cohorts in the immunotherapy era. This study is among the first to use genetic ancestry markers to add to the emerging evidence that PCa in men of African ancestry may have a distinct biology associated with B7-H3 expression. LAY SUMMARY: B7-H3 is an immunomodulatory molecule that is highly expressed in prostate cancer and is under investigation in clinical trials. The authors determined that B7-H3 protein expression is inversely correlated with an individual's proportion of African ancestry. The results demonstrate that B7-H3 messenger RNA expression is correlated with the density of tumor T-regulatory cells. Finally, in the first paired analysis of B7-H3 protein expression before and after neoadjuvant intensive hormone therapy, the authors determined that hormone therapy is associated with a decrease in B7-H3 protein levels, suggesting that androgen signaling may positively regulate B7-H3 expression. These results may help to guide the design of future clinical trials and to develop biomarkers of response in such trials.
Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Androgênios , Antígenos B7/genética , Antígenos B7/metabolismo , Antígeno B7-H1/genética , Contagem de Células , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , RNA Mensageiro , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Microambiente TumoralRESUMO
PURPOSE: We sought to compare outcomes between neoadjuvant therapy with a novel hormonal agent (NHA) prior to radical prostatectomy (neo-RP) and up-front radical prostatectomy (RP) in patients with high-risk prostate cancer (HRPC). MATERIALS AND METHODS: HRPC patients treated on 3 trials of neoadjuvant NHA followed by RP formed the neo-RP cohort (112). The RP group (259) comprised an observational cohort of HRPC patients undergoing RP without neoadjuvant therapy between 2010-2016 at our institution who met key eligibility criteria for the neoadjuvant trials (ie ≥3 positive biopsy cores and Gleason ≥4+3=7). Inverse probability of treatment weighting (IPTW) was used to minimize potential confounding factors when estimating treatment effects. The primary outcomes were time to biochemical recurrence (BCR) and metastasis-free survival (MFS). RESULTS: Before IPTW, the neo-RP cohort had higher rates of Gleason 9-10 cancer (46% vs 24%), cT3 disease (22% vs 5%), and PSA ≥20 ng/ml (14% vs 7%); after IPTW, the 2 cohorts were balanced. Overall, after IPTW, time to BCR (HR=0.25 [95% CI 0.18-0.37]) and MFS (HR=0.26 [0.15-0.46]) were significantly longer in the neo-RP compared to the RP cohort. Rates of adjuvant (7% vs 24%) and salvage therapy (34% vs 46%) were lower in the neo-RP cohort. CONCLUSIONS: Neoadjuvant therapy with an NHA prior to RP was associated with longer time to BCR and superior MFS compared to up-front RP in men with HRPC. These findings are hypothesis-generating but suggest benefit with neoadjuvant therapy with an NHA in HRPC, an approach which is currently being studied in the phase 3 PROTEUS trial (NCT03767244).
Assuntos
Terapia Neoadjuvante , Neoplasias da Próstata , Ensaios Clínicos Fase III como Assunto , Intervalo Livre de Doença , Humanos , Masculino , Recidiva Local de Neoplasia/cirurgia , Antígeno Prostático Específico , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Resultado do TratamentoRESUMO
Abiraterone blocks androgen synthesis and prolongs survival in patients with castration-resistant prostate cancer, which is otherwise driven by intratumoral androgen synthesis. Abiraterone is metabolized in patients to Δ(4)-abiraterone (D4A), which has even greater anti-tumour activity and is structurally similar to endogenous steroidal 5α-reductase substrates, such as testosterone. Here, we show that D4A is converted to at least three 5α-reduced and three 5ß-reduced metabolites in human serum. The initial 5α-reduced metabolite, 3-keto-5α-abiraterone, is present at higher concentrations than D4A in patients with prostate cancer taking abiraterone, and is an androgen receptor agonist, which promotes prostate cancer progression. In a clinical trial of abiraterone alone, followed by abiraterone plus dutasteride (a 5α-reductase inhibitor), 3-keto-5α-abiraterone and downstream metabolites were depleted by the addition of dutasteride, while D4A concentrations rose, showing that dutasteride effectively blocks production of a tumour-promoting metabolite and permits D4A accumulation. Furthermore, dutasteride did not deplete the three 5ß-reduced metabolites, which were also clinically detectable, demonstrating the specific biochemical effects of pharmacological 5α-reductase inhibition on abiraterone metabolism. Our findings suggest a previously unappreciated and biochemically specific method of clinically fine-tuning abiraterone metabolism to optimize therapy.
Assuntos
Inibidores de 5-alfa Redutase/farmacologia , Androgênios/biossíntese , Androstenos/metabolismo , Dutasterida/farmacologia , Dutasterida/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , 3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Inibidores de 5-alfa Redutase/uso terapêutico , Acetato de Abiraterona/administração & dosagem , Acetato de Abiraterona/sangue , Acetato de Abiraterona/metabolismo , Acetato de Abiraterona/uso terapêutico , Administração Oral , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androstenos/administração & dosagem , Androstenos/sangue , Androstenos/farmacologia , Animais , Linhagem Celular Tumoral , Progressão da Doença , Humanos , Masculino , Camundongos , Oxirredução/efeitos dos fármacos , Neoplasias da Próstata/sangue , Neoplasias de Próstata Resistentes à Castração/sangue , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Heterogeneity in the genomic landscape of metastatic prostate cancer has become apparent through several comprehensive profiling efforts, but little is known about the impact of this heterogeneity on clinical outcome. Here, we report comprehensive genomic and transcriptomic analysis of 429 patients with metastatic castration-resistant prostate cancer (mCRPC) linked with longitudinal clinical outcomes, integrating findings from whole-exome, transcriptome, and histologic analysis. For 128 patients treated with a first-line next-generation androgen receptor signaling inhibitor (ARSI; abiraterone or enzalutamide), we examined the association of 18 recurrent DNA- and RNA-based genomic alterations, including androgen receptor (AR) variant expression, AR transcriptional output, and neuroendocrine expression signatures, with clinical outcomes. Of these, only RB1 alteration was significantly associated with poor survival, whereas alterations in RB1, AR, and TP53 were associated with shorter time on treatment with an ARSI. This large analysis integrating mCRPC genomics with histology and clinical outcomes identifies RB1 genomic alteration as a potent predictor of poor outcome, and is a community resource for further interrogation of clinical and molecular associations.
Assuntos
Neoplasias de Próstata Resistentes à Castração/genética , Idoso , Androstenos/uso terapêutico , Benzamidas , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Genômica/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Receptores Androgênicos/genética , Resultado do TratamentoRESUMO
PURPOSE: We report on the post-radical prostatectomy outcomes of patients enrolled in 3 randomized, multicenter, clinical trials of intense neoadjuvant androgen deprivation therapy prior radical prostatectomy. MATERIALS AND METHODS: All patients included were enrolled in trials evaluating intense androgen deprivation therapy followed by radical prostatectomy. The primary end point was time to biochemical recurrence, defined as the time from radical prostatectomy to prostate specific antigen >0.1 ng/ml or start of first post-radical prostatectomy therapy, stratified by pathological response at radical prostatectomy (presence or absence of exceptional pathological response defined as residual tumor at radical prostatectomy measuring 0-5 mm). Secondary end points included metastasis-free survival, overall survival, and time to testosterone recovery. RESULTS: Overall, 117 patients were included in the analysis, of whom 78.6% (92) had high risk disease. Following neoadjuvant therapy, 21.4% (25) had 0-5 mm of residual tumor, including 9.4% (11) with a pathological complete response. Overall, 49 patients (41.9%) experienced biochemical recurrence and the 3-year biochemical recurrence-free rate was 59.1% (95% CI 49.0-67.9). Of the 25 patients with an exceptional pathological response, 2 patients (8.0%) developed biochemical recurrence while 51.1% of nonresponders (47/92) developed biochemical recurrence. Testosterone recovery was observed in 93.8% of patients (106/113). PTEN loss and intraductal carcinoma were associated with shorter time to biochemical recurrence. CONCLUSIONS: In this pooled analysis of prospective trials, we demonstrate that exceptional pathological response following neoadjuvant therapy is associated with a favorable impact on biochemical recurrence. PTEN loss and intraductal carcinoma were associated with biochemical recurrence. Additional followup is warranted to evaluate the impact on long-term outcomes.
Assuntos
Androstenos/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Benzamidas/uso terapêutico , Nitrilas/uso terapêutico , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Idoso , Método Duplo-Cego , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Neoadjuvante , Estudos Prospectivos , Neoplasias da Próstata/patologia , Medição de Risco , Resultado do TratamentoRESUMO
PURPOSE: This multicenter randomized phase 2 trial investigates the impact of intense androgen deprivation on radical prostatectomy pathologic response and radiographic and tissue biomarkers in localized prostate cancer (NCT02903368). MATERIALS AND METHODS: Eligible patients had a Gleason score ≥4+3=7, prostate specific antigen >20 ng/mL or T3 disease and lymph nodes <20 mm. In Part 1, patients were randomized 1:1 to apalutamide, abiraterone acetate, prednisone and leuprolide (AAPL) or abiraterone, prednisone, leuprolide (APL) for 6 cycles (1 cycle=28 days) followed by radical prostatectomy. Surgical specimens underwent central review. The primary end point was the rate of pathologic complete response or minimum residual disease (minimum residual disease, tumor ≤5 mm). Secondary end points included prostate specific antigen response, positive margin rate and safety. Magnetic resonance imaging and tissue biomarkers of pathologic outcomes were explored. RESULTS: The study enrolled 118 patients at 4 sites. Median age was 61 years and 94% of patients had high-risk disease. The combined pathologic complete response or minimum residual disease rate was 22% in the AAPL arm and 20% in the APL arm (difference: 1.5%; 1-sided 95% CI -11%, 14%; 1-sided p=0.4). No new safety signals were observed. There was low concordance and correlation between posttherapy magnetic resonance imaging assessed and pathologically assessed tumor volume. PTEN-loss, ERG positivity and presence of intraductal carcinoma were associated with extensive residual tumor. CONCLUSIONS: Intense neoadjuvant hormone therapy in high-risk prostate cancer resulted in favorable pathologic responses (tumor <5 mm) in 21% of patients. Pathologic responses were similar between treatment arms. Part 2 of this study will investigate the impact of adjuvant hormone therapy on biochemical recurrence.
Assuntos
Acetato de Abiraterona/uso terapêutico , Antineoplásicos Hormonais/uso terapêutico , Antineoplásicos/uso terapêutico , Leuprolida/uso terapêutico , Prednisona/uso terapêutico , Prostatectomia , Neoplasias da Próstata/cirurgia , Tioidantoínas/uso terapêutico , Idoso , Terapia Combinada , Quimioterapia Combinada , Humanos , Masculino , Pessoa de Meia-Idade , Período Pré-Operatório , Neoplasias da Próstata/patologia , Medição de Risco , Resultado do TratamentoRESUMO
BACKGROUND: Abiraterone acetate suppresses adrenal androgens and glucocorticoids through the inhibition of CYP17; however, given the risk of mineralocorticoid excess, it is administered with glucocorticoids. Herein, the authors performed a phase 2, single-arm study that was designed to assess the safety of abiraterone acetate without steroids in patients with castration-resistant prostate cancer. METHODS: Eligible patients had castration-resistant prostate cancer with controlled blood pressure and normal potassium. Patients initially received abiraterone acetate at a dose of 1000 mg daily alone. Those with persistent or severe mineralocorticoid toxicity received treatment with prednisone initiated at a dose of 5 mg twice daily. Therapy was continued until radiographic progression, toxicity, or withdrawal. The primary objective of the current study was to determine the percentage of men requiring prednisone to manage mineralocorticoid toxicity. Toxicity was graded according to Common Terminology Criteria for Adverse Events, version 4.0. RESULTS: A total of 58 patients received at least 1 dose of abiraterone acetate; the majority had metastases (53 patients; 91.4%). Sixteen patients (27.6%) received prior chemotherapy, 6 patients (10.3%) received prior enzalutamide, and 4 patients (7%) received prior ketoconazole. Grade 3 to 4 adverse events of interest included hypertension (9 patients; 15.5%) and hypokalemia (4 patients; 7%). There was no grade ≥3 edema. Seven patients (12%) initiated prednisone therapy for mineralocorticoid toxicity, 3 patients for hypertension (5%), and 4 patients for hypokalemia (7%). Two patients initiated prednisone therapy for fatigue (3%). Forty patients (68%) experienced a decline in prostate-specific antigen of ≥50% with the use of abiraterone acetate alone. Patients with lower baseline levels of androstenedione (P = .04), androsterone (P = .01), dehydroepiandrosterone (P = .03), and 17-hydroxyprogesterone (P = .03) were found to be more likely to develop mineralocorticoid toxicity. CONCLUSIONS: Treatment with abiraterone acetate without steroids is feasible, although clinically significant adverse events can occur in a minority of patients. The use of abiraterone acetate without prednisone should be balanced with the potential for toxicity and requires close monitoring.
Assuntos
Acetato de Abiraterona/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Idoso , Seguimentos , Glucocorticoides/administração & dosagem , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Próstata Resistentes à Castração/patologiaRESUMO
BACKGROUND: Inherited mutations in DNA-repair genes such as BRCA2 are associated with increased risks of lethal prostate cancer. Although the prevalence of germline mutations in DNA-repair genes among men with localized prostate cancer who are unselected for family predisposition is insufficient to warrant routine testing, the frequency of such mutations in patients with metastatic prostate cancer has not been established. METHODS: We recruited 692 men with documented metastatic prostate cancer who were unselected for family history of cancer or age at diagnosis. We isolated germline DNA and used multiplex sequencing assays to assess mutations in 20 DNA-repair genes associated with autosomal dominant cancer-predisposition syndromes. RESULTS: A total of 84 germline DNA-repair gene mutations that were presumed to be deleterious were identified in 82 men (11.8%); mutations were found in 16 genes, including BRCA2 (37 men [5.3%]), ATM (11 [1.6%]), CHEK2 (10 [1.9% of 534 men with data]), BRCA1 (6 [0.9%]), RAD51D (3 [0.4%]), and PALB2 (3 [0.4%]). Mutation frequencies did not differ according to whether a family history of prostate cancer was present or according to age at diagnosis. Overall, the frequency of germline mutations in DNA-repair genes among men with metastatic prostate cancer significantly exceeded the prevalence of 4.6% among 499 men with localized prostate cancer (P<0.001), including men with high-risk disease, and the prevalence of 2.7% in the Exome Aggregation Consortium, which includes 53,105 persons without a known cancer diagnosis (P<0.001). CONCLUSIONS: In our multicenter study, the incidence of germline mutations in genes mediating DNA-repair processes among men with metastatic prostate cancer was 11.8%, which was significantly higher than the incidence among men with localized prostate cancer. The frequencies of germline mutations in DNA-repair genes among men with metastatic disease did not differ significantly according to age at diagnosis or family history of prostate cancer. (Funded by Stand Up To Cancer and others.).