Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(6): 2157-2185, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36814393

RESUMO

Copper (Cu) and iron (Fe) are essential micronutrients that are toxic when accumulating in excess in cells. Thus, their uptake by roots is tightly regulated. While plants sense and respond to local Cu availability, the systemic regulation of Cu uptake has not been documented in contrast to local and systemic control of Fe uptake. Fe abundance in the phloem has been suggested to act systemically, regulating the expression of Fe uptake genes in roots. Consistently, shoot-to-root Fe signaling is disrupted in Arabidopsis thaliana mutants lacking the phloem companion cell-localized Fe transporter, OLIGOPEPTIDE TRANSPORTER 3 (AtOPT3). We report that AtOPT3 also transports Cu in heterologous systems and contributes to its delivery from sources to sinks in planta. The opt3 mutant contained less Cu in the phloem, was sensitive to Cu deficiency and mounted a transcriptional Cu deficiency response in roots and young leaves. Feeding the opt3 mutant and Cu- or Fe-deficient wild-type seedlings with Cu or Fe via the phloem in leaves downregulated the expression of both Cu- and Fe-deficiency marker genes in roots. These data suggest the existence of shoot-to-root Cu signaling, highlight the complexity of Cu/Fe interactions, and the role of AtOPT3 in fine-tuning root transcriptional responses to the plant Cu and Fe needs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Cobre , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Floema/genética , Floema/metabolismo , Homeostase , Ferro/metabolismo , Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo
2.
Plant Cell Environ ; 47(2): 557-573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37916653

RESUMO

Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cálcio/metabolismo , Antiporters/genética , Antiporters/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cátions/metabolismo , Plantas/metabolismo
3.
New Phytol ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062903

RESUMO

Iron (Fe) is crucial for metabolic functions of living organisms. Plants access occluded Fe through interactions with rhizosphere microorganisms and symbionts. Yet, the interplay between Fe addition and plant-mycorrhizal interactions, especially the molecular mechanisms underlying mycorrhiza-assisted Fe processing in plants, remains largely unexplored. We conducted mesocosms in Pinus plants inoculated with different ectomycorrhizal fungi (EMF) Suillus species under conditions with and without Fe coatings. Meta-transcriptomic, biogeochemical, and X-ray fluorescence imaging analyses were applied to investigate early-stage mycorrhizal roots. While Fe addition promoted Pinus growth, it concurrently reduced mycorrhiza formation rate, symbiosis-related metabolites in plant roots, and aboveground plant carbon and macronutrient content. This suggested potential trade-offs between Fe-enhanced plant growth and symbiotic performance. However, the extent of this trade-off may depend on interactions between host plants and EMF species. Interestingly, dual EMF species were more effective at facilitating plant Fe uptake by inducing diverse Fe-related functions than single-EMF species. This subsequently triggered various Fe-dependent physiological and biochemical processes in Pinus roots, significantly contributing to Pinus growth. However, this resulted in a greater carbon allocation to roots, relatively reducing the aboveground plant carbon content. Our study offers critical insights into how EMF communities rebalance benefits of Fe-induced effects on symbiotic partners.

4.
Environ Sci Technol ; 57(1): 730-740, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36538415

RESUMO

Manganese (Mn) exists as Mn(II), Mn(III), or Mn(IV) in soils, and the Mn oxidation state controls the roles of Mn in numerous environmental processes. However, the variations of Mn oxidation states with climate remain unknown. We determined the Mn oxidation states in highly weathered bulk volcanic soils (primary minerals free) across two rainfall gradients covering mean annual precipitation (MAP) of 0.25-5 m in the Hawaiian Islands. With increasing MAP, the soil redox conditions generally shifted from oxic to suboxic and to anoxic despite fluctuating at each site; concurrently, the proportions of Mn(IV) and Mn(II) decreased and increased, respectively. Mn(III) was low at both low and high MAP, but accumulated substantially, up to 80% of total Mn, in soils with prevalent suboxic conditions at intermediate MAP. Mn(III) was likely hosted in Mn(III,IV) and iron(III) oxides or complexed with organic matter, and its distribution among these hosts varied with soil redox potentials and soil pH. Soil redox conditions and rainfall-driven leaching jointly controlled exchangeable Mn(II) in soils, with its concentration peaking at intermediate MAP. The Mn redox chemistry was at disequilibrium, with the oxidation states correlating with long-term average soil redox potentials better than with soil pH. The soil redox conditions likely fluctuated between oxic and anoxic conditions more frequently at intermediate than at low and high MAP, creating biogeochemical hot spots where Mn, Fe, and other redox-sensitive elements may be actively cycled.


Assuntos
Compostos Férricos , Manganês , Manganês/análise , Solo , Ferro , Oxirredução
5.
Plant J ; 108(4): 1162-1173, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34559918

RESUMO

Zinc (Zn) is essential for normal plant growth and development. The Zn-regulated transporter, iron-regulated transporter (IRT)-like protein (ZIP) family members are involved in Zn transport and cellular Zn homeostasis throughout the domains of life. In this study, we have characterized four ZIP transporters from Arabidopsis thaliana (IRT3, ZIP4, ZIP6, and ZIP9) to better understand their functional roles. The four ZIP proteins can restore the growth defect of a yeast Zn uptake mutant and are upregulated under Zn deficiency. Single and double mutants show no phenotypes under Zn-sufficient or Zn-limited growth conditions. In contrast, triple and quadruple mutants show impaired growth irrespective of external Zn supply due to reduced Zn translocation from root to shoot. All four ZIP genes are highly expressed during seed development, and siliques from all single and higher-order mutants exhibited an increased number of abnormal seeds and decreased Zn levels in mature seeds relative to wild type. The seed phenotypes could be reversed by supplementing the soil with Zn. Our data demonstrate that IRT3, ZIP4, ZIP6, and ZIP9 function redundantly in maintaining Zn homeostasis and seed development in A. thaliana.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Zinco/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Estresse Fisiológico
6.
J Synchrotron Radiat ; 28(Pt 6): 1672-1683, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738921

RESUMO

Uranium speciation and redox behaviour is of critical importance in the nuclear fuel cycle. X-ray absorption near-edge spectroscopy (XANES) is commonly used to probe the oxidation state and speciation of uranium, and other elements, at the macroscopic and microscopic scale, within nuclear materials. Two-dimensional (2D) speciation maps, derived from microfocus X-ray fluorescence and XANES data, provide essential information on the spatial variation and gradients of the oxidation state of redox active elements such as uranium. In the present work, we elaborate and evaluate approaches to the construction of 2D speciation maps, in an effort to maximize sensitivity to the U oxidation state at the U L3-edge, applied to a suite of synthetic Chernobyl lava specimens. Our analysis shows that calibration of speciation maps can be improved by determination of the normalized X-ray absorption at excitation energies selected to maximize oxidation state contrast. The maps are calibrated to the normalized absorption of U L3 XANES spectra of relevant reference compounds, modelled using a combination of arctangent and pseudo-Voigt functions (to represent the photoelectric absorption and multiple-scattering contributions). We validate this approach by microfocus X-ray diffraction and XANES analysis of points of interest, which afford average U oxidation states in excellent agreement with those estimated from the chemical state maps. This simple and easy-to-implement approach is general and transferrable, and will assist in the future analysis of real lava-like fuel-containing materials to understand their environmental degradation, which is a source of radioactive dust production within the Chernobyl shelter.


Assuntos
Acidente Nuclear de Chernobyl , Urânio , Síncrotrons , Espectroscopia por Absorção de Raios X , Raios X
7.
Environ Sci Technol ; 54(19): 12502-12510, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32845141

RESUMO

Underground flows of acidic fluids through fractured rock can create new porosity and increase accessibility to hazardous trace elements such as arsenic. In this study, we developed a custom microfluidic cell for an in operando synchrotron experiment using X-ray attenuation. The experiment mimics reactive fracture flow by passing an acidic fluid over a surface of mineralogically heterogeneous rock from the Eagle Ford shale. Over 48 h, calcite was preferentially dissolved, forming an altered layer 200-500 µm thick with a porosity of 63-68% and surface area >10× higher than that in the unreacted shale as shown by xCT analyses. Calcite dissolution rate quantified from the attenuation data was 3 × 10-4 mol/m2s and decreased to 3 × 10-5 mol/m2s after 24 h because of increasing diffusion limitations. Erosion of the fracture surface increased access to iron-rich minerals, thereby increasing access to toxic metals such as arsenic. Quantification using XRF and XANES microspectroscopy indicated up to 0.5 wt % of As(-I) in arsenopyrite and 1.2 wt % of As(V) associated with ferrihydrite. This study provides valuable contributions for understanding and predicting fracture alteration and changes to the mobilization potential of hazardous metals and metalloids.


Assuntos
Arsênio , Carbonatos , Microfluídica , Minerais , Síncrotrons
8.
Angew Chem Int Ed Engl ; 59(21): 8240-8246, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32185857

RESUMO

Given the consensus that pressure improves cation ordering in most of known materials, a discovery of pressure-induced disordering could require recognition of an order-disorder transition in solid-state physics/chemistry and geophysics. Double perovskites Y2 CoIrO6 and Y2 CoRuO6 polymorphs synthesized at 0, 6, and 15 GPa show B-site ordering, partial ordering, and disordering, respectively, accompanied by lattice compression and crystal structure alteration from monoclinic to orthorhombic symmetry. Correspondingly, the long-range ferrimagnetic ordering in the B-site ordered samples are gradually overwhelmed by B-site disorder. Theoretical calculations suggest that unusual unit-cell compressions under external pressures unexpectedly stabilize the disordered phases of Y2 CoIrO6 and Y2 CoRuO6 .

9.
J Synchrotron Radiat ; 26(Pt 6): 1967-1979, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721742

RESUMO

Soils regulate the environmental impacts of trace elements, but direct measurements of reaction mechanisms in these complex, multi-component systems can be challenging. The objective of this work was to develop approaches for assessing effects of co-localized geochemical matrix elements on the accumulation and chemical speciation of arsenate applied to a soil matrix. Synchrotron X-ray fluorescence microprobe (µ-XRF) images collected across 100 µm × 100 µm and 10 µm × 10 µm regions of a naturally weathered soil sand-grain coating before and after treatment with As(V) solution showed strong positive partial correlations (r' = 0.77 and 0.64, respectively) between accumulated As and soil Fe, with weaker partial correlations (r' > 0.1) between As and Ca, and As and Zn in the larger image. Spatial and non-spatial regression models revealed a dominant contribution of Fe and minor contributions of Ca and Ti in predicting accumulated As, depending on the size of the sample area analyzed. Time-of-flight secondary ion mass spectrometry analysis of an area of the sand grain showed a significant correlation (r = 0.51) between Fe and Al, so effects of Fe versus Al (hydr)oxides on accumulated As could not be separated. Fitting results from 25 As K-edge microscale X-ray absorption near-edge structure (µ-XANES) spectra collected across a separate 10 µm × 10 µm region showed ∼60% variation in proportions of Fe(III) and Al(III)-bound As(V) standards, and fits to µ-XANES spectra collected across the 100 µm × 100 µm region were more variable. Consistent with insights from studies on model systems, the results obtained here indicate a dominance of Fe and possibly Al (hydr)oxides in controlling As(V) accumulation within microsites of the soil matrix analyzed, but the analyses inferred minor augmentation from co-localized Ti, Ca and possibly Zn.

10.
Plant Physiol ; 178(2): 507-523, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30108140

RESUMO

Understanding the distribution of elements within plant tissues is important across a range of fields in plant science. In this review, we examine synchrotron-based x-ray fluorescence microscopy (XFM) as an elemental imaging technique in plant sciences, considering both its historical and current uses as well as discussing emerging approaches. XFM offers several unique capabilities of interest to plant scientists, including in vivo analyses at room temperature and pressure, good detection limits (approximately 1-100 mg kg-1), and excellent resolution (down to 50 nm). This has permitted its use in a range of studies, including for functional characterization in molecular biology, examining the distribution of nutrients in food products, understanding the movement of foliar fertilizers, investigating the behavior of engineered nanoparticles, elucidating the toxic effects of metal(loid)s in agronomic plant species, and studying the unique properties of hyperaccumulating plants. We anticipate that continuing technological advances at XFM beamlines also will provide new opportunities moving into the future, such as for high-throughput screening in molecular biology, the use of exotic metal tags for protein localization, and enabling time-resolved, in vivo analyses of living plants. By examining current and potential future applications, we hope to encourage further XFM studies in plant sciences by highlighting the versatility of this approach.


Assuntos
Microscopia de Fluorescência/métodos , Plantas/ultraestrutura , Plantas/metabolismo , Síncrotrons , Raios X
11.
Environ Sci Technol ; 51(11): 5913-5922, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28472587

RESUMO

Climate change-induced perturbations in the hydrologic regime are expected to impact biogeochemical processes, including contaminant mobility and cycling. Elevated levels of geogenic and anthropogenic arsenic are found along many coasts around the world, most notably in south and southeast Asia but also in the United States, particularly along the Mid-Atlantic coast. The mechanism by and the extent to which arsenic may be released in contaminated coastal soils due to sea level rise are unknown. Here we show a series of data from a coastal arsenic-contaminated soil exposed to sea and river waters in biogeochemical microcosm reactors across field-validated redox conditions. We find that reducing conditions lead to arsenic release from historically contaminated coastal soils through reductive dissolution of arsenic-bearing mineral oxides in both sea and river water inundations, with less arsenic release from seawater scenarios than river water due to inhibition of oxide dissolution. For the first time, we systematically display gradation of solid phase soil-arsenic speciation across defined redox windows from reducing to oxidizing conditions in natural waters by combining biogeochemical microcosm experiments and X-ray absorption spectroscopy. Our results demonstrate the threat of sea level rise stands to impact arsenic release from contaminated coastal soils by changing redox conditions.


Assuntos
Arsênio , Mudança Climática , Poluentes do Solo , Solo , Espectroscopia por Absorção de Raios X
12.
Environ Sci Technol ; 51(23): 13755-13762, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29053267

RESUMO

This investigation builds on previous studies on military-relevant tungsten (W) to more thoroughly explore environmental pathways and bioaccumulation kinetics during direct soil exposure versus trophic transfer and elucidate its relative accumulation and speciation in different snail organs. The modeled steady-state concentration and bioaccumulation factor (BAF) of W from soil into cabbage were 302 mg/kg and 0.55, respectively. Steady-state concentrations (34 mg/kg) and BAF values (0.05) obtained for the snail directly exposed to contaminated soil were lower than trophic transfer by consumption of W-contaminated cabbage (tissue concentration of 86 mg/kg; BAF of 0.36). Thus, consumption of contaminated food is the most important pathway for W mobility in this food chain. The highest concentrations of W compartmentalization were in the snail's hepatopancreas based on wet chemistry and synchrotron-based investigations. Chemical speciation via inductively couple plasma mass spectrometry showed a higher degree of polytungstate partitioning in the hepatopancreas relative to the rest of the body. Based on synchrotron analysis, W was incorporated into the shell matrix during exposure, particularly during the regeneration of damaged shell. This offers the potential for application of the shell as a longer-term biomonitoring and forensics tool for historic exposure.


Assuntos
Brassica , Cadeia Alimentar , Tungstênio/farmacocinética , Animais , Monitoramento Ambiental , Cinética , Modelos Animais
13.
J Environ Qual ; 46(2): 373-383, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28380570

RESUMO

Metal contaminants in soils can persist for millennia, causing lasting negative impacts on local ecosystems. Long-term contaminant bioavailability is related to soil pH and to the strength and stability of solid-phase associations. We combined physical density separation with synchrotron-based microspectroscopy to reduce solid-phase complexity and to study Zn speciation in field-contaminated soils. We also investigated Zn uptake in two Zn-hyperaccumulating ecotypes of (Ganges and Prayon). Soils were either moderately contaminated (500-800 mg Zn kg via contaminated biosolids application) or grossly enriched (26,000 mg Zn kg via geogenic enrichment). Soils were separated using sodium polytungstate into three fractions: light fraction (LF) (<1.6 g cm), medium fraction (MF) (1.6-2.8 g cm), and heavy fraction (HF) (>2.8 g cm). Approximately 45% of the total Zn was associated with MF in biosolids-contaminated soils. From these data, we infer redistribution to the MF after biosolids application because Zn in biosolids is principally associated with HF and LF. Our results suggest that increasing proportions of HF-associated Zn in soils may be related to greater relative Zn removal by Zn hyperaccumulating plants. Using density fractions enabled assessment of Zn speciation on a microscale despite incomplete fractionation. Analyzing both density fractions and whole soils revealed certain phases (e.g., ZnS, Zn coprecipitated with Fe oxides) that were not obvious in all analyses, indicating multiple views of the same soils enable a more complete understanding of Zn speciation.


Assuntos
Poluentes do Solo/química , Zinco/química , Disponibilidade Biológica , Poluição Ambiental , Metais Pesados , Solo
14.
J Synchrotron Radiat ; 23(Pt 4): 937-46, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27359142

RESUMO

This study investigates the distributions of Br, Ca, Cl, Cr, Cu, K, Fe, Mn, Pb, Ti, V and Zn in Phragmites australis root system and the function of Fe nanoparticles in scavenging metals in the root epidermis using synchrotron X-ray microfluorescence, synchrotron transmission X-ray microscope measurement and synchrotron X-ray absorption near-edge structure techniques. The purpose of this study is to understand the mobility of metals in wetland plant root systems after their uptake from rhizosphere soils. Phragmites australis samples were collected in the Yangtze River intertidal zone in July 2013. The results indicate that Fe nanoparticles are present in the root epidermis and that other metals correlate significantly with Fe, suggesting that Fe nanoparticles play an important role in metal scavenging in the epidermis.

15.
J Environ Sci (China) ; 41: 172-182, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26969063

RESUMO

Liberty State Park in New Jersey, USA, is a "brownfield" site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May-September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (µXRF) and synchrotron X-ray computed microtomography (µCMT) techniques. The root structure measurement by synchrotron µCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron µXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.


Assuntos
Metais Pesados/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Poluentes do Solo/metabolismo , Typhaceae/metabolismo , Monitoramento Ambiental , Ferro/metabolismo , New Jersey , Síncrotrons , Instalações de Eliminação de Resíduos , Microtomografia por Raio-X
16.
J Synchrotron Radiat ; 22(6): 1459-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26524311

RESUMO

Understanding mechanisms that control plant root metal assimilation in soil is critical to the sustainable management of metal-contaminated land. With the assistance of the synchrotron X-ray fluorescence technique, this study investigated possible mechanisms that control the localization of Fe, Cu, Mn, Pb and Zn in the root tissues of Typha latifolia L. collected from a contaminated wetland. Metal localizations especially in the case of Fe and Pb in the dermal tissue and the vascular bundles were different. Cluster analysis was performed to divide the dermal tissue into iron-plaque-enriched dermal tissue and regular dermal tissue based on the spatial distribution of Pb and Fe. Factor analysis showed that Cu and Zn were closely correlated to each other in the dermal tissues. The association of Cu, Zn and Mn with Fe was strong in both regular dermal tissue and iron-plaque-enriched dermal tissue, while significant (p < 0.05) correlation of Fe with Pb was only observed in tissues enriched with iron plaque. In the vascular bundles, Zn, Mn and Cu showed strong association, suggesting that the localization of these three elements was controlled by a similar mechanism. Iron plaque in the peripheral dermal tissues acted as a barrier for Pb and a buffer for Zn, Cu and Mn. The Casparian strip regulated the transportation of metals from dermal tissues to the vascular bundles. The results suggested that the mechanisms controlling metal localization in root tissues varied with both tissue types and metals.


Assuntos
Metais/farmacocinética , Raízes de Plantas/metabolismo , Poluentes do Solo/farmacocinética , Espectrometria por Raios X/métodos , Síncrotrons , Typhaceae/metabolismo , Metais/análise , Raízes de Plantas/química , Distribuição Tecidual , Typhaceae/química
17.
Plant J ; 76(4): 627-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24033783

RESUMO

Oxalate-producing plants accumulate calcium oxalate crystals (CaOx(c)) in the range of 3-80% w/w of their dry weight, reducing calcium (Ca) bioavailability. The calcium oxalate deficient 5 (cod5) mutant of Medicago truncatula has been previously shown to contain similar Ca concentrations to wild-type (WT) plants, but lower oxalate and CaOx(c) concentrations. We imaged the Ca distribution in WT and cod5 leaflets via synchrotron X-ray fluorescence mapping (SXRF). We observed a difference in the Ca distribution between cod5 and WT leaflets, manifested as an abundance of Ca in the interveinal areas and a lack of Ca along the secondary veins in cod5, i.e. the opposite of what is observed in WT. X-ray microdiffraction (µXRD) of M. truncatula leaves confirmed that crystalline CaOx(c) (whewellite; CaC2 O4 · H2 O) was present in the WT only, in cells sheathing the secondary veins. Together with µXRD, microbeam Ca K-edge X-ray absorption near-edge structure spectroscopy (µXANES) indicated that, among the forms of CaOx, i.e. crystalline or amorphous, only amorphous CaOx was present in cod5. These results demonstrate that deletion of COD5 changes both Ca localization and the form of CaOx within leaflets.


Assuntos
Cálcio/metabolismo , Medicago truncatula/metabolismo , Folhas de Planta/metabolismo , Cálcio/química , Medicago truncatula/genética , Oxalatos/metabolismo , Fenótipo , Folhas de Planta/química , Folhas de Planta/genética , Deleção de Sequência , Síncrotrons , Espectroscopia por Absorção de Raios X , Difração de Raios X
18.
J Hazard Mater ; 472: 134528, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733785

RESUMO

In the United States, dangerously high arsenic (As) levels have been found in drinking water wells in more than 25 states, potentially exposing 2.1 million people to drinking water high in As; a known carcinogen. The anticipated sea-level rise (SLR) is expected to alter soil biogeochemical and hydrological conditions, potentially impacting their ability to sequester As. In our study of coastal Wilmington, DE, an area projected to experience a 1 -meter SLR by 2100, we examined the spatial distribution, speciation, and release possibilities of As due to SLR. To understand the complex dynamics at play, we employed a comprehensive approach, including bulk and micro X-ray absorption spectroscopy measurements, hydrological pattern evaluation, and macroscopic stirred-flow experiments. Our results suggest that introducing reducing and saline conditions can increase As release in both river water and seawater inundation scenarios, most likely due to ionic competition and the dissolution of As-bearing Fe/Mn oxides. Regardless of the salinity source, the released As concentrations consistently exceeded the EPA threshold for drinking water. Our results provide valuable insights for developing appropriate remedial and management strategies for this site and numerous others facing similar environmental challenges. ENVIRONMENTAL IMPLICATION: With nearly two hundred million individuals living within coastal flood plains and with two million square kilometers of land and one trillion dollars' worth of assets lying less than 1 m above current sea level, sea-level rise (SLR) is one of the significant socio-economic threats associated with global warming. Arsenic is a prevalent contaminant in coastal areas impacted by industrial activities, many of which are susceptible to being impacted by SLR. This study examines SLR's impact on arsenic fate and speciation in a densely populated coastline in Wilmington, DE, expecting 1 meter of SLR by 2100.


Assuntos
Arsênio , Água do Mar , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Água do Mar/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Solo/química , Monitoramento Ambiental
19.
Environ Eng Sci ; 30(4): 187-193, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23633894

RESUMO

Geochemical reactions may alter the permeability of leakage pathways in caprocks, which serve a critical role in confining CO2 in geologic carbon sequestration. A caprock specimen from a carbonate formation in the Michigan sedimentary Basin was fractured and studied in a high-pressure core flow experiment. Inflowing brine was saturated with CO2 at 40°C and 10 MPa, resulting in an initial pH of 4.6, and had a calcite saturation index of -0.8. Fracture permeability decreased during the experiment, but subsequent analyses did not reveal calcite precipitation. Instead, experimental observations indicate that calcite dissolution along the fracture pathway led to mobilization of less soluble mineral particles that clogged the flow path. Analyses of core sections via electron microscopy, synchrotron-based X-ray diffraction imaging, and the first application of microbeam Ca K-edge X-ray absorption near edge structure, provided evidence that these occlusions were fragments from the host rock rather than secondary precipitates. X-ray computed tomography showed a significant loss of rock mass within preferential flow paths, suggesting that dissolution also removed critical asperities and caused mechanical closure of the fracture. The decrease in fracture permeability despite a net removal of material along the fracture pathway demonstrates a nonintuitive, inverse relationship between dissolution and permeability evolution in a fractured carbonate caprock.

20.
J Environ Qual ; 51(5): 1054-1065, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35900088

RESUMO

Low-cost and low-input water treatment systems are important for industrial stormwater remediation. Here we examine a flow-through reactor treatment installation where water exceeds the allowable maximum concentration for drinking water in multiple metals (e.g., chromium [Cr], cadmium [Cd], zinc [Zn]) prior to treatment. Specifically, we seek to understand why Cr attenuated in the reactors is not leachable by identifying the specific chemical form of Cr and dominant mechanisms promoting sequestration in the reactors. Total solid-phase Cr concentration in the peat media ranged from 50 to 150 mg/kg after 1 yr of exposure to stormwater to 300 to 900 mg/kg after 3.5 yr. X-ray fluorescence mapping images show Cr, iron (Fe), and Zn spatially correlated over a scale of 10 µm to 5 mm. Chromium rinds form on the edges of peat particles as Cr accumulates. Chromium and Fe K-edge X-ray absorption near edge structure spectroscopy reveal chromium predominately in the 3+ oxidation state with lesser amounts of elemental Cr. We propose the primary means of chromium attenuation in the reactors is precipitation as Cr-Fe hydroxides combined with trivalent Cr adsorption onto peat surfaces.


Assuntos
Água Potável , Poluentes Químicos da Água , Adsorção , Cádmio , Cromo/química , Hidróxidos/química , Ferro/química , Solo , Poluentes Químicos da Água/análise , Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA