Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Small ; 20(4): e2306270, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37702136

RESUMO

Persistent and uncontrolled inflammation is the root cause of various debilitating diseases. Given that interleukin-1 receptor-associated kinase 4 (IRAK4) is a critical modulator of inflammation, inhibition of its activity with selective drug molecules (IRAK4 inhibitors) represents a promising therapeutic strategy for inflammatory disorders. To exploit the full potential of this treatment approach, drug carriers for efficient delivery of IRAK4 inhibitors to inflamed tissues are essential. Herein, the first nanoparticle-based platform for the targeted systemic delivery of a clinically tested IRAK4 inhibitor, PF-06650833, with limited aqueous solubility (57 µg mL-1 ) is presented. The developed nanocarriers increase the intrinsic aqueous dispersibility of this IRAK4 inhibitor by 40 times. A targeting peptide on the surface of nanocarriers significantly enhances their accumulation after intravenous injection in inflamed tissues of mice with induced paw edema and ulcerative colitis when compared to non-targeted counterparts. The delivered IRAK4 inhibitor markedly abates inflammation and dramatically suppresses paw edema, mitigates colitis symptoms, and reduces proinflammatory cytokine levels in the affected tissues. Importantly, repeated injections of IRAK4 inhibitor-loaded nanocarriers have no acute toxic effect on major organs of mice. Therefore, the developed nanocarriers have the potential to significantly improve the therapeutic efficacy of IRAK4 inhibitors for different inflammatory diseases.


Assuntos
Colite , Quinases Associadas a Receptores de Interleucina-1 , Camundongos , Animais , Quinases Associadas a Receptores de Interleucina-1/química , Citocinas , Inflamação/tratamento farmacológico , Edema
2.
Biol Reprod ; 110(6): 1191-1200, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38738758

RESUMO

In this brief review, we discuss our efforts to validate nanoplatforms for imaging and treatment of endometriosis. We specifically highlight our use of nonhuman primates and primate tissues in this effort. Endometriosis is a painful disorder of women and nonhuman primates where endometrium-like tissue exists outside of the uterus. There are no reliable, specific, and noninvasive diagnostic tests for endometriosis. Laparoscopic imaging remains the gold standard for identifying small endometriotic lesions in both women and monkeys. Visualizing and surgically removing microscopic lesions remains a clinical challenge. To address this challenge, we have created nanoparticle reagents that, when administered intravenously, enter endometriotic lesions both passively and by targeting endometriotic cells. The particles can carry payloads, including near-infrared fluorescent dyes and magnetic nanoparticles. These agents can be used for imaging and thermal ablation of diseased tissues. We evaluated this approach on macaque endometriotic cells, human and macaque endometrium engrafted into immunodeficient mice, in endometrium subcutaneously autografted in macaques, and in rhesus monkeys with spontaneous endometriosis. Employing these models, we report that nanoplatform-based reagents can improve imaging and provide thermal ablation of endometriotic tissues.


Assuntos
Endometriose , Nanopartículas , Endometriose/diagnóstico por imagem , Endometriose/veterinária , Endometriose/patologia , Feminino , Animais , Humanos
3.
Int J Mol Sci ; 25(10)2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38791582

RESUMO

A novel nanotechnology-based drug delivery system (DDS) targeted at pancreatic cancer cells was developed, characterized, and tested. The system consisted of liposomes as carriers, an anticancer drug (paclitaxel) as a chemotherapeutic agent, and a modified synthetic somatostatin analog, 5-pentacarbonyl-octreotide, a ligand for somatostatin receptor 2 (SSTR2), as a targeting moiety for pancreatic cancer. The cellular internalization, cytotoxicity, and antitumor activity of the DDS were tested in vitro using human pancreatic ductal adenocarcinoma (PDAC) cells with different expressions of the targeted SSTR2 receptors, and in vivo on immunodeficient mice bearing human PDAC xenografts. The targeted drug delivery system containing paclitaxel exhibited significantly enhanced cytotoxicity compared to non-targeted DDS, and this efficacy was directly related to the levels of SSTR2 expression. It was found that octreotide-targeted DDS proved exceptionally effective in suppressing the growth of PDAC tumors. This study underscores the potential of octreotide-targeted liposomal delivery systems to enhance the therapeutic outcomes for PDAC compared with non-targeted liposomal DDS and Paclitaxel-Cremophor® EL, suggesting a promising avenue for future cancer therapy innovations.


Assuntos
Sistemas de Liberação de Medicamentos , Lipossomos , Octreotida , Paclitaxel , Neoplasias Pancreáticas , Receptores de Somatostatina , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Receptores de Somatostatina/metabolismo , Camundongos , Linhagem Celular Tumoral , Paclitaxel/farmacologia , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Lipossomos/química , Sistemas de Liberação de Medicamentos/métodos , Octreotida/administração & dosagem , Octreotida/farmacologia , Somatostatina/análogos & derivados , Nanotecnologia/métodos , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia
4.
Small ; : e2301873, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37471169

RESUMO

Ectopic pregnancy (EP) - the implantation of an embryo outside of the endometrial cavity, often in the fallopian tube - is a significant contributor to maternal morbidity and leading cause of maternal death due to hemorrhage in first trimester. Current diagnostic modalities including human chorionic gonadotropin (hCG) quantification and ultrasonography are effective, but may still misdiagnose EP at initial examination in many cases. Depending on the patient's hemodynamic stability and gestational duration of the pregnancy, as assessed by history, hCG measurement and ultrasonography, management strategies may include expectant management, chemotherapeutic treatment using methotrexate (MTX), or surgical intervention. While these strategies are largely successful, expectant management may result in tubal rupture if the pregnancy does not resolve spontaneously; MTX administration is not always successful and may induce significant side effects; and surgical intervention may result in loss of the already-damaged fallopian tube, further hampering the patient's subsequent attempts to conceive. Nanomaterial-based technologies offer the potential to enhance delivery of diagnostic imaging contrast and therapeutic agents to more effectively and safely manage EP. The purpose of this narrative review is to summarize the current state of nanomedicine technology dedicated to its potential to improve both the diagnosis and treatment of EP.

5.
Small ; : e2301776, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37518857

RESUMO

Gynecological malignancies are a significant cause of morbidity and mortality across the globe. Due to delayed presentation, gynecological cancer patients are often referred late in the disease's course, resulting in poor outcomes. A considerable number of patients ultimately succumb to chemotherapy-resistant disease, which reoccurs at advanced stages despite treatment interventions. Although efforts have been devoted to developing therapies that demonstrate reduced resistance to chemotherapy and enhanced toxicity profiles, current clinical outcomes remain unsatisfactory due to treatment resistance and unfavorable off-target effects. Consequently, innovative biological and nanotherapeutic approaches are imperative to strengthen and optimize the therapeutic arsenal for gynecological cancers. Advancements in nanotechnology-based therapies for gynecological malignancies offer significant advantages, including reduced toxicity, expanded drug circulation, and optimized therapeutic dosing, ultimately leading to enhanced treatment effectiveness. Recent advances in nucleic acid therapeutics using microRNA, small interfering RNA, and messenger RNA provide novel approaches for cancer therapeutics. Effective single-agent and combinatorial nucleic acid therapeutics for gynecological malignancies have the potential to transform cancer treatment by giving safer, more tailored approaches than conventional therapies. This review highlights current preclinical studies that effectively exploit these approaches for the treatment of gynecological malignant tumors and malignant ascites.

6.
Small ; : e2302969, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452511

RESUMO

The first-line treatment for ectopic pregnancy (EP), the chemotherapeutic methotrexate (MTX), has a failure rate of more than 10%, which can lead to severe complications or death. Inadequate accumulation of administered MTX at the ectopic implantation site significantly contributes to therapeutic failure. This study reports the first glutathione-responsive polymersomes for efficient delivery of MTX to the implantation site and its triggered release in placental cells. Fluorescence and photoacoustic imaging have confirmed that the developed polymersomes preferentially accumulate after systemic administration in the implantation site of pregnant mice at early gestational stages. The high concentrations of intracellular glutathione (GSH) reduce an incorporated disulfide bond within polymersomes upon internalization into placental cells, resulting in their disintegration and efficient drug release. Consequently, MTX delivered by polymersomes induces pregnancy demise in mice, as opposed to free MTX at the same dose regimen. To achieve the same therapeutic efficacy with free MTX, a sixfold increase in dosage is required. In addition, mice successfully conceive and birth healthy pups following a prior complete pregnancy demise induced by methotrexate polymersomes. Therefore, the developed MTX nanomedicine can potentially improve EP management and reduce associated mortality rates and related cost.

7.
Small ; 19(2): e2202343, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36394151

RESUMO

Ectopic pregnancy (EP) is the leading cause of maternity-related death in the first trimester of pregnancy. Approximately 98% of ectopic implantations occur in the fallopian tube, and expedient management is crucial for preventing hemorrhage and maternal death in the event of tubal rupture. Current ultrasound strategies misdiagnose EP in up to 40% of cases, and the failure rate of methotrexate treatment for confirmed EP exceeds 10%. Here the first theranostic strategy for potential management of EP is reported using a near-infrared naphthalocyanine dye encapsulated within polymeric nanoparticles. These nanoparticles preferentially accumulate in the developing murine placenta within 24 h following systemic administration, and enable visualization of implantation sites at various gestational stages via fluorescence and photoacoustic imaging. These nanoparticles do not traverse the placental barrier to the fetus or impact fetal development. However, excitation of nanoparticles localized in specific placentas with focused NIR light generates heat (>43 °C) sufficient for disruption of placental function, resulting in the demise of targeted fetuses with no effect on adjacent fetuses. This novel approach would enable diagnostic confirmation of EP when current imaging strategies are unsuccessful, and elimination of EP could subsequently be achieved using the same nano-agent to generate localized hyperthermia resulting in targeted placental impairment.


Assuntos
Hipertermia Induzida , Gravidez Ectópica , Gravidez , Feminino , Humanos , Animais , Camundongos , Placenta/diagnóstico por imagem , Gravidez Ectópica/terapia , Tubas Uterinas/diagnóstico por imagem , Ultrassonografia
8.
Small ; 18(24): e2107808, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35434932

RESUMO

Endometriosis is a devastating disease in which endometrial-like tissue forms lesions outside the uterus. It causes infertility and severe pelvic pain in ≈176 million women worldwide, and there is currently no cure for this disease. Magnetic hyperthermia could potentially eliminate widespread endometriotic lesions but has not previously been considered for treatment because conventional magnetic nanoparticles have relatively low heating efficiency and can only provide ablation temperatures (>46 °C) following direct intralesional injection. This study is the first to describe nanoparticles that enable systemically delivered magnetic hyperthermia for endometriosis treatment. When subjected to an alternating magnetic field (AMF), these hexagonal iron-oxide nanoparticles exhibit extraordinary heating efficiency that is 6.4× greater than their spherical counterparts. Modifying nanoparticles with a peptide targeted to vascular endothelial growth factor receptor 2 (VEGFR-2) enhances their endometriosis specificity. Studies in mice bearing transplants of macaque endometriotic tissue reveal that, following intravenous injection at a low dose (3 mg per kg), these nanoparticles efficiently accumulate in endometriotic lesions, selectively elevate intralesional temperature above 50 °C upon exposure to external AMF, and completely eradicate them with a single treatment. These nanoparticles also demonstrate promising potential as magnetic resonance imaging (MRI) contrast agents for precise detection of endometriotic tissue before AMF application.


Assuntos
Endometriose , Hipertermia Induzida , Nanopartículas de Magnetita , Nanopartículas , Animais , Meios de Contraste , Endometriose/terapia , Feminino , Calefação , Humanos , Hipertermia Induzida/métodos , Campos Magnéticos , Camundongos , Fator A de Crescimento do Endotélio Vascular
9.
Small ; 18(44): e2204436, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36098251

RESUMO

This study presents the first messenger RNA (mRNA) therapy for metastatic ovarian cancer and cachexia-induced muscle wasting based on lipid nanoparticles that deliver follistatin (FST) mRNA predominantly to cancer clusters following intraperitoneal administration. The secreted FST protein, endogenously synthesized from delivered mRNA, efficiently reduces elevated activin A levels associated with aggressive ovarian cancer and associated cachexia. By altering the cancer cell phenotype, mRNA treatment prevents malignant ascites, delays cancer progression, induces the formation of solid tumors, and preserves muscle mass in cancer-bearing mice by inhibiting negative regulators of muscle mass. Finally, mRNA therapy provides synergistic effects in combination with cisplatin, increasing the survival of mice and counteracting muscle atrophy induced by chemotherapy and cancer-associated cachexia. The treated mice develop few nonadherent tumors that are easily resected from the peritoneum. Clinically, this nanomedicine-based mRNA therapy can facilitate complete cytoreduction, target resistance, improve resilience during aggressive chemotherapy, and improve survival in advanced ovarian cancer.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Humanos , Feminino , Caquexia/tratamento farmacológico , Caquexia/metabolismo , Folistatina/metabolismo , Folistatina/farmacologia , Folistatina/uso terapêutico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/terapia , Músculo Esquelético/metabolismo
10.
Mol Pharm ; 19(12): 4696-4704, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36409995

RESUMO

Recently, therapeutics based on mRNA (mRNA) have attracted significant interest for vaccines, cancer immunotherapy, and gene editing. However, the lack of biocompatible vehicles capable of delivering mRNA to the target tissue and efficiently expressing the encoded proteins impedes the development of mRNA-based therapies for a variety of diseases. Herein, we report mRNA-loaded polymeric nanoparticles based on diethylenetriamine-substituted poly(aspartic acid) that induce protein expression in the lungs and muscles following intravenous and intramuscular injections, respectively. Animal studies revealed that the amount of polyethylene glycol (PEG) on the nanoparticle surface affects the translation of the delivered mRNA into the encoded protein in the target tissue. After systemic administration, only mRNA-loaded nanoparticles modified with PEG at a molar ratio of 1:1 (PEG/polymer) induce protein expression in the lungs. In contrast, protein expression was detected only following intramuscular injection of mRNA-loaded nanoparticles with a PEG/polymer ratio of 10:1. These findings suggest that the PEG density on the surface of poly(aspartic acid)-based nanoparticles should be optimized for different delivery routes depending on the purpose of the mRNA treatment.


Assuntos
Ácido Aspártico , Nanopartículas , Animais , RNA Mensageiro/genética , Polímeros , Imunoterapia , Polietilenoglicóis
11.
Small ; 17(7): e2004975, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33491876

RESUMO

Endometriosis is an incurable gynecological disease characterized by the abnormal growth of endometrium-like tissue, characteristic of the uterine lining, outside of the uterine cavity. Millions of people with endometriosis suffer from pelvic pain and infertility. This review aims to discuss whether nanomedicines that are promising therapeutic approaches for various diseases have the potential to create a paradigm shift in endometriosis management. For the first time, the available reports and achievements in the field of endometriosis nanomedicine are critically evaluated, and a summary of how nanoparticle-based systems can improve endometriosis treatment and diagnosis is provided. Parallels between cancer and endometriosis are also drawn to understand whether some fundamental principles of the well-established cancer nanomedicine field can be adopted for the development of novel nanoparticle-based strategies for endometriosis. This review provides the state of the art of endometriosis nanomedicine and perspective for researchers aiming to realize and exploit the full potential of nanoparticles for treatment and imaging of the disorder.


Assuntos
Endometriose , Neoplasias , Endometriose/tratamento farmacológico , Endométrio , Feminino , Humanos , Nanomedicina , Dor Pélvica
12.
Nanomedicine ; 37: 102446, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34303840

RESUMO

Ewing's sarcoma (EwS) is the second most common bone cancer in children and adolescents. Current chemotherapy regimens are mainly ineffective in patients with relapsed disease and cause long-term effects in survivors. Therefore, we have developed a combinatorial therapy based on a novel drug candidate named ML111 that exhibits selective activity against EwS cells and synergizes with vincristine. To increase the aqueous solubility of hydrophobic ML111, polymeric nanoparticles (ML111-NP) were developed. In vitro data revealed that ML111-NP compromise viability of EwS cells without affecting non-malignant cells. Furthermore, ML111-NP exhibit strong synergistic effects in a combination with vincristine on EwS cells, while this drug pair exhibits antagonistic effects towards normal cells. Finally, animal studies validated that ML111-NP efficiently accumulate in orthotopic EwS xenografts after intravenous injection and provide superior therapeutic outcomes in a combination with vincristine without evident toxicity. These results support the potential of the ML111-based combinatorial therapy for EwS.


Assuntos
Antineoplásicos , Sinergismo Farmacológico , Sarcoma de Ewing , Vincristina , Animais , Humanos , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Nanopartículas/química , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Vincristina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Small ; 16(18): e1906936, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32250034

RESUMO

Endometriosis is a painful disorder where endometrium-like tissue forms lesions outside of the uterine cavity. Intraoperative identification and removal of these lesions are difficult. This study presents a nanoplatform that concurrently delineates and ablates endometriosis tissues using real-time near-infrared (NIR) fluorescence and photothermal therapy (PTT). The nanoplatform consists of a dye, silicon naphthalocyanine (SiNc), capable of both NIR fluorescence imaging and PTT, and a polymeric nanoparticle as a SiNc carrier to endometriosis tissue following systemic administration. To achieve high contrast during fluorescence imaging of endometriotic lesions, nanoparticles are constructed to be non-fluorescent prior to internalization by endometriosis cells. In vitro studies confirm that these nanoparticles activate the fluorescence signal following internalization in macaque endometrial stromal cells and ablate them by increasing cellular temperature to 53 ° C upon interaction with NIR light. To demonstrate in vivo efficiency of the nanoparticles, biopsies of endometrium and endometriosis from rhesus macaques are transplanted into immunodeficient mice. Imaging with the intraoperative Fluobeam 800 system reveals that 24 h following intravenous injection, nanoparticles efficiently accumulate in, and demarcate, endometriotic grafts with fluorescence. Finally, the nanoparticles increase the temperature of endometriotic grafts up to 47 °C upon exposure to NIR light, completely eradicating them after a single treatment.


Assuntos
Endometriose , Hipertermia Induzida , Nanopartículas , Fototerapia , Animais , Endometriose/diagnóstico por imagem , Endometriose/terapia , Feminino , Humanos , Macaca mulatta , Camundongos , Imagem Óptica
14.
Mol Pharm ; 17(5): 1538-1545, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32212709

RESUMO

Necrosis targeting and imaging has significant implications for evaluating tumor growth, therapeutic response, and delivery of therapeutics to perinecrotic tumor zones. Hypericin is a hydrophobic molecule with high necrosis affinity and fluorescence imaging properties. To date, the safe and effective delivery of hypericin to areas of necrosis in vivo remains a challenge because of its incompatible biophysical properties. To address this issue, we have developed a biodegradable nanoparticle (Hyp-NP) for delivery of hypericin to tumors for necrosis targeting and fluorescence imaging. The nanoparticle was developed using methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) and hypericin by a modified solvent evaporation technique. The size of Hyp-NP was 19.0 ± 1.8 nm from cryo-TEM and 37.3 ± 0.7 nm from dynamic light-scattering analysis with a polydispersity index of 0.15 ± 0.01. The encapsulation efficiency of hypericin was 95.05% w/w by UV-vis absorption. After storage for 30 days, 91.4% hypericin was retained in Hyp-NP with nearly no change in hydrodynamic size, representing nanoparticle stability. In an ovarian cancer cell line, Hyp-NP demonstrated cellular internalization with intracellular cytoplasmic localization and preserved fluorescence and necrosis affinity. In a mouse subcutaneous tumor model, tumor accumulation was noted at 8 h postinjection, with near-complete clearance at 96 h postinjection. Hyp-NP was shown to be tightly localized within necrotic tumor zones. Histological analysis of harvested organs demonstrated no gross abnormalities, and in vitro, no hemolysis was observed. This proof-of-concept study demonstrates the potential clinical applications of Hyp-NP for necrosis targeting.


Assuntos
Nanopartículas/química , Neoplasias/tratamento farmacológico , Imagem Óptica/métodos , Perileno/análogos & derivados , Animais , Antracenos , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Necrose , Neoplasias/diagnóstico por imagem , Perileno/química , Perileno/farmacocinética , Perileno/farmacologia , Perileno/toxicidade
15.
J Vasc Interv Radiol ; 30(9): 1480-1486.e2, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31202675

RESUMO

PURPOSE: To assess selective accumulation of biodegradable nanoparticles within hepatic tumors after transarterial delivery for in vivo localization and combinatorial phototherapy. MATERIALS AND METHODS: A VX2 hepatic tumor model was used in New Zealand white rabbits. Transarterial delivery of silicon naphthalocyanine biodegradable nanoparticles was performed using a microcatheter via the proper hepatic artery. Tumors were exposed via laparotomy, and nanoparticles were observed by near-infrared (NIR) fluorescence imaging. For phototherapy, a handheld NIR laser (785 nm) at 0.6 W/cm2 was used to expose tumor or background liver, and tissue temperatures were assessed with a fiberoptic temperature probe. Intratumoral reactive oxygen species formation was assessed using a fluorophore (2',7'-dichlorodihydrofluorescein diacetate). RESULTS: Nanoparticles selectively accumulated within viable tumor by NIR fluorescence. Necrotic portions of tumor did not accumulate nanoparticles, consistent with a vascular distribution. NIR-dependent heat generation was observed with nanoparticle-containing tumors, but not in background liver. No heat was generated in the absence of NIR laser light. Reactive oxygen species were formed in nanoparticle-containing tumors exposed to NIR laser light, but not in background liver treated with NIR laser or in tumors in the absence of NIR light. CONCLUSIONS: Biodegradable nanoparticle delivery to liver tumors from a transarterial approach enabled selective in vivo tumor imaging and combinatorial phototherapy.


Assuntos
Meios de Contraste/administração & dosagem , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Nanopartículas , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Silanos/administração & dosagem , Nanomedicina Teranóstica/métodos , Animais , Linhagem Celular Tumoral , Feminino , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Projetos Piloto , Valor Preditivo dos Testes , Coelhos , Espécies Reativas de Oxigênio/metabolismo
16.
Nanomedicine ; 14(4): 1395-1405, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29635082

RESUMO

Herein, we report an efficient combinatorial therapy for metastatic ovarian cancer based on siRNA-mediated suppression of DJ-1 protein combined with a low dose of cisplatin. DJ-1 protein modulates, either directly or indirectly, different oncogenic pathways that support and promote survival, growth, and invasion of ovarian cancer cells. To evaluate the potential of this novel therapy, we have engineered a cancer-targeted nanoplatform and validated that DJ-1 siRNA delivered by this nanoplatform after intraperitoneal injection efficiently downregulates the DJ-1 protein in metastatic ovarian cancer tumors and ascites. In vivo experiments revealed that DJ-1 siRNA monotherapy outperformed cisplatin alone by inhibiting tumor growth and increasing survival of mice with metastatic ovarian cancer. Finally, three cycles of siRNA-mediated DJ-1 therapy in combination with a low dose of cisplatin completely eradicated ovarian cancer tumors from the mice, and there was no cancer recurrence detected for the duration of the study, which lasted 35 weeks.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Proteína Desglicase DJ-1/metabolismo , RNA Interferente Pequeno/genética , Animais , Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/genética , Proteína Desglicase DJ-1/genética
17.
Nanomedicine ; 13(3): 955-963, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27884637

RESUMO

This study represents a novel phototheranostic nanoplatform based on the near-infrared (NIR) heptamethine cyanine dye, IR775, which is capable of concurrent real-time fluorescence imaging and cancer eradication with combinatorial phototherapy. To achieve water solubility and enhance tumor delivery, the hydrophobic IR775 dye was loaded into a biocompatible polymeric nanoparticle with a diameter of ~40nm and slightly negative surface charge (-2.34mV). The nanoparticle-encapsulated hydrophobic IR775 dye (IR775-NP) is characterized by an enhanced fluorescence quantum yield (16%) when compared to the water soluble analogs such as ICG (2.7%) and IR783 (8%). Furthermore, the developed IR-775-NP efficiently generates both heat and reactive oxygen species under NIR light irradiation, eradicating cancer cells in vitro. Finally, animal studies revealed that the IR775-NP accumulates in cancer tumors after systemic administration, efficiently delineates them with NIR fluorescence signal and completely eradicates chemo resistant cancer tissue after a single dose of combinatorial phototherapy.


Assuntos
Corantes Fluorescentes/farmacocinética , Corantes Fluorescentes/uso terapêutico , Indóis/farmacocinética , Indóis/uso terapêutico , Neoplasias Ovarianas/terapia , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Animais , Carbocianinas/farmacocinética , Carbocianinas/uso terapêutico , Linhagem Celular Tumoral , Feminino , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/análise , Humanos , Indóis/administração & dosagem , Indóis/análise , Camundongos , Nanopartículas/administração & dosagem , Nanopartículas/análise , Imagem Óptica/métodos , Neoplasias Ovarianas/diagnóstico por imagem , Ovário/diagnóstico por imagem
18.
Mol Pharm ; 13(6): 2070-83, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27170529

RESUMO

We report an efficient therapeutic modality for platinum resistant ovarian cancer based on siRNA-mediated suppression of a multifunctional DJ-1 protein that is responsible for the proliferation, growth, invasion, oxidative stress, and overall survival of various cancers. The developed therapeutic strategy can work alone or in concert with a low dose of the first line chemotherapeutic agent cisplatin, to elicit a maximal therapeutic response. To achieve an efficient DJ-1 knockdown, we constructed the polypropylenimine dendrimer-based nanoplatform targeted to LHRH receptors overexpressed on ovarian cancer cells. The quantitative PCR and Western immunoblotting analysis revealed that the delivered DJ-1 siRNA downregulated the expression of targeted mRNA and corresponding protein by more than 80% in various ovarian cancer cells. It was further demonstrated that siRNA-mediated DJ-1 suppression dramatically impaired proliferation, viability, and migration of the employed ovarian cancer cells. Finally, the combinatorial approach led to the most pronounced therapeutic response in all the studied cell lines, outperforming both siRNA-mediated DJ-1 knockdown and cisplatin treatment alone. It is noteworthy that the platinum-resistant cancer cells (A2780/CDDP) with the highest basal level of DJ-1 protein are most susceptible to the developed therapy and this susceptibility declines with decreasing basal levels of DJ-1. Finally, we interrogate the molecular underpinnings of the DJ-1 knockdown effects in the treatment of the ovarian cancer cells. By using various experimental techniques, it was revealed that DJ-1 depletion (1) decreases the activity of the Akt pathway, thereby reducing cellular proliferation and migration and increasing the antiproliferative effect of cisplatin on ovarian cancer cells; (2) enhances the activity of p53 tumor suppressor protein therefore restoring cell cycle arrest functionality and upregulating the Bax-caspase pathway, triggering cell death; and (3) weakens the cellular defense mechanisms against inherited oxidative stress thereby increasing toxic intracellular radicals and amplifying the reactive oxygen species created by the administration of cisplatin.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteína Desglicase DJ-1/metabolismo , RNA Interferente Pequeno/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dendrímeros/administração & dosagem , Feminino , Humanos , Nanomedicina/métodos , Neoplasias Ovarianas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores LHRH/metabolismo
19.
Nanomedicine ; 11(8): 1961-70, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26238076

RESUMO

This study represents a novel approach for intraoperative ovarian cancer treatment based on the combinatorial effect of a targeted photodynamic therapy (PDT) associated with suppression of the DJ-1 protein, one of the key players in the ROS defense of cancer cells. To assess the potential of the developed therapy, dendrimer-based nanoplatforms for cancer-targeted delivery of near-infrared photosensitizer, phthalocyanine, and DJ-1 siRNA have been constructed. In vitro studies revealed that therapeutic efficacy of the combinatorial approach was enhanced when compared to PDT alone and this enhancement was more pronounced in ovarian carcinoma cells, which are characterized by higher basal levels of DJ-1 protein. Moreover, the ovarian cancer tumors exposed to a single dose of combinatorial therapy were completely eradicated from the mice and the treated animals showed no evidence of cancer recurrence. Thus, the developed therapeutic approach can be potentially employed intraoperatively to eradicate unresactable cancer cells. FROM THE CLINICAL EDITOR: The complete clearance of microscopic residual tumor cells during excision surgery is important to improve survival of the patient. In this interesting paper, the authors developed a novel approach using targeted photodynamic therapy (PDT), combining a photosensitizer, phthalocyanine, and DJ-1 siRNA for the treatment of ovarian cancer. The data showed that this approach increased cancer cell killing and may pave way for future clinical studies.


Assuntos
Indóis/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Oncogênicas/genética , Neoplasias Ovarianas/terapia , Fármacos Fotossensibilizantes/uso terapêutico , RNA Interferente Pequeno/uso terapêutico , Animais , Linhagem Celular Tumoral , Dendrímeros/química , Dendrímeros/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Indóis/administração & dosagem , Isoindóis , Camundongos , Camundongos Nus , Nanoestruturas/química , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovário/metabolismo , Ovário/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Proteína Desglicase DJ-1 , RNA Interferente Pequeno/administração & dosagem , Terapêutica com RNAi , Espécies Reativas de Oxigênio/metabolismo
20.
Supramol Chem ; 27(1-2): 65-71, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25506191

RESUMO

The (+) and (-) enantiomers for a cryptophane-7-bond-linker-benzenesulfonamide biosensor (C7B) were synthesized and their chirality confirmed by electronic circular dichroism (ECD) spectroscopy. Biosensor binding to carbonic anhydrase II (CAII) was characterized for both enantiomers by hyperpolarized (hp) 129Xe NMR spectroscopy. Our previous study of the racemic (+/-) C7B biosensor-CAII complex [Chambers, et al., J. Am. Chem. Soc. 2009, 131, 563-569], identified two "bound" 129Xe@C7B peaks by hp 129Xe NMR (at 71 and 67 ppm, relative to "free" biosensor at 64 ppm), which led to the initial hypothesis that (+) and (-) enantiomers produce diastereomeric peaks when coordinated to Zn2+ at the chiral CAII active site. Unexpectedly, the single enantiomers complexed with CAII also identified two "bound" 129Xe@C7B peaks: (+) 72, 68 ppm and (-) 68, 67 ppm. These results are consistent with X-ray crystallographic evidence for benzenesulfonamide inhibitors occupying a second site near the CAII surface. As illustrated by our studies of this model protein-ligand interaction, hp 129Xe NMR spectroscopy can be useful for identifying supramolecular assemblies in solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA