Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(4): e26539, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38124341

RESUMO

Decreased long-range temporal correlations (LRTC) in brain signals can be used to measure cognitive effort during task execution. Here, we examined how learning a motor sequence affects long-range temporal memory within resting-state functional magnetic resonance imaging signal. Using the Hurst exponent (HE), we estimated voxel-wise LRTC and assessed changes over 5 consecutive days of training, followed by a retention scan 12 days later. The experimental group learned a complex visuomotor sequence while a complementary control group performed tightly matched movements. An interaction analysis revealed that HE decreases were specific to the complex sequence and occurred in well-known motor sequence learning associated regions including left supplementary motor area, left premotor cortex, left M1, left pars opercularis, bilateral thalamus, and right striatum. Five regions exhibited moderate to strong negative correlations with overall behavioral performance improvements. Following learning, HE values returned to pretraining levels in some regions, whereas in others, they remained decreased even 2 weeks after training. Our study presents new evidence of HE's possible relevance for functional plasticity during the resting-state and suggests that a cortical subset of sequence-specific regions may continue to represent a functional signature of learning reflected in decreased long-range temporal dependence after a period of inactivity.


Assuntos
Aprendizagem , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Oxigênio
2.
Magn Reson Med ; 92(4): 1540-1555, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38703017

RESUMO

PURPOSE: Magnetization transfer saturation (MTsat) mapping is commonly used to examine the macromolecular content of brain tissue. This study compared variable flip angle (VFA) T1 mapping against compressed-sensing MP2RAGE (csMP2RAGE) T1 mapping for accelerating MTsat imaging. METHODS: VFA, MP2RAGE, and csMP2RAGE were compared against inversion-recovery T1 in an aqueous phantom at 3 T. The same 1-mm VFA, MP2RAGE, and csMP2RAGE protocols were acquired in 4 healthy subjects to compare T1 and MTsat. Bloch-McConnell simulations were used to investigate differences between the phantom and in vivo T1 results. Ten healthy controls were imaged twice with the csMP2RAGE MTsat protocol to quantify repeatability. RESULTS: The MP2RAGE and csMP2RAGE protocols were 13.7% and 32.4% faster than the VFA protocol, respectively. At these scan times, all approaches provided strong repeatability and accurate T1 times (< 5% difference) in the phantom, but T1 accuracy was more impacted by T2 for VFA than for MP2RAGE. In vivo, VFA estimated longer T1 times than MP2RAGE and csMP2RAGE. Simulations suggest that the differences in the T1 measured using VFA, MP2RAGE, and inversion recovery could be explained by the magnetization-transfer effects. In the test-retest experiment, we found that the csMP2RAGE has a minimum detectable change of 2.3% for T1 mapping and 7.8% for MTsat imaging. CONCLUSIONS: We demonstrated that MP2RAGE can be used in place of VFA T1 mapping in an MTsat protocol. Furthermore, a shorter scan time and high repeatability can be achieved using the csMP2RAGE sequence.


Assuntos
Encéfalo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Adulto , Masculino , Reprodutibilidade dos Testes , Feminino , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Mapeamento Encefálico/métodos , Simulação por Computador , Adulto Jovem , Voluntários Saudáveis
3.
Cereb Cortex ; 33(12): 7468-7476, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-36879454

RESUMO

Age-related changes of intracortical myelin in bipolar disorder (BD) have been observed to deviate from the quadratic age curve observed in healthy controls (HC), but it is unclear if this holds at varying cortical depths. From BD (n = 44; age range = 17.6-45.5 years) and HC (n = 60; age range = 17.1-45.8 years) participants, we collected 3T T1-weighted (T1w) images with strong intracortical contrast. Signal values were sampled from 3 equivolume cortical depths. Linear mixed models were used to compare age-related changes in the T1w signal between depths and between groups at each depth. In HC, the age-related changes were significantly different between the superficial one-fourth depth and the deeper depths in the right ventral somatosensory (t = -4.63; FDRp = 0.00025), left dorsomedial somatosensory (t = -3.16; FDRp = 0.028), left rostral ventral premotor (t = -3.16; FDRp = 0.028), and right ventral inferior parietal cortex (t = -3.29; FDRp = 0.028). BD participants exhibited no differences in the age-related T1w signal between depths. Illness duration was negatively correlated with the T1w signal at the one-fourth depth in the right anterior cingulate cortex (rACC; rho = -0.50; FDRp = 0.029). Physiological age-related and depth-specific variation in the T1w signal were not observed in BD. The T1w signal in the rACC may reflect lifetime disease burden in the disorder.


Assuntos
Transtorno Bipolar , Bainha de Mielina , Humanos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Transtorno Bipolar/diagnóstico por imagem , Giro do Cíngulo , Lobo Parietal , Cabeça , Imageamento por Ressonância Magnética/métodos
4.
Neuroimage ; 274: 120159, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150332

RESUMO

Diffusion MRI (dMRI) is a valuable imaging technique to study the connectivity and microstructure of the brain in vivo. However, the resolution of dMRI is limited by the low signal-to-noise ratio (SNR) of this technique. Various multi-shot acquisition strategies have been developed to achieve sub-millimeter resolution, but they require long scan times which can be restricting for patient scans. Alternatively, the SNR of single-shot acquisitions can be increased by using a spiral readout trajectory to minimize the sequence echo time. Imaging at ultra-high fields (UHF) could further increase the SNR of single-shot dMRI; however, the shorter T2* of brain tissue and the greater field non-uniformities at UHFs will degrade image quality, causing image blurring, distortions, and signal loss. In this study, we investigated the trade-off between the SNR and resolution of different k-space trajectories, including echo planar imaging (EPI), partial Fourier EPI, and spiral trajectories, over a range of dMRI resolutions at 7T. The effective resolution, spatial specificity and sharpening effect were measured from the point spread function (PSF) of the simulated diffusion sequences for a nominal resolution range of 0.6-1.8 mm. In-vivo partial brain scans at a nominal resolution of 1.5 mm isotropic were acquired using the three readout trajectories to validate the simulation results. Field probes were used to measure dynamic magnetic fields offline up to the 3rd order of spherical harmonics. Image reconstruction was performed using static ΔB0 field maps and the measured trajectories to correct image distortions and artifacts, leaving T2* effects as the primary source of blurring. The effective resolution was examined in fractional anisotropy (FA) maps calculated from a multi-shell dataset with b-values of 300, 1000, and 2000 s/mm2 in 5, 16, and 48 directions, respectively. In-vivo scans at nominal resolutions of 1, 1.2, and 1.5 mm were acquired and the SNR of the different trajectories calculated using the multiple replica method to investigate the SNR. Finally, in-vivo whole brain scans with an effective resolution of 1.5 mm isotropic were acquired to explore the SNR and efficiency of different trajectories at a matching effective resolution. FA and intra-cellular volume fraction (ICVF) maps calculated using neurite orientation dispersion and density imaging (NODDI) were used for the comparison. The simulations and in vivo imaging results showed that for matching nominal resolutions, EPI trajectories had the highest specificity and effective resolution with maximum image sharpening effect. However, spirals have a significantly higher SNR, in particular at higher resolutions and even when the effective image resolutions are matched. Overall, this work shows that the higher SNR of single-shot spiral trajectories at 7T allows us to achieve higher effective resolutions compared to EPI and PF-EPI to map the microstructure and connectivity of small brain structures.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Razão Sinal-Ruído , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/métodos
5.
Hum Brain Mapp ; 44(8): 3023-3044, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36896711

RESUMO

Statistical effects of cortical metrics derived from standard T1- and T2-weighted magnetic resonance imaging (MRI) images, such as gray-white matter contrast (GWC), boundary sharpness coefficient (BSC), T1-weighted/T2-weighted ratio (T1w/T2w), and cortical thickness (CT), are often interpreted as representing or being influenced by intracortical myelin content with little empirical evidence to justify these interpretations. We first examined spatial correspondence with more biologically specific microstructural measures, and second compared between-marker age-related trends with the underlying hypothesis that different measures primarily driven by similar changes in myelo- and microstructural underpinnings should be highly related. Cortical MRI markers were derived from MRI images of 127 healthy subjects, aged 18-81, using cortical surfaces that were generated with the CIVET 2.1.0 pipeline. Their gross spatial distributions were compared with gene expression-derived cell-type densities, histology-derived cytoarchitecture, and quantitative R1 maps acquired on a subset of participants. We then compared between-marker age-related trends in their shape, direction, and spatial distribution of the linear age effect. The gross anatomical distributions of cortical MRI markers were, in general, more related to myelin and glial cells than neuronal indicators. Comparing MRI markers, our results revealed generally high overlap in spatial distribution (i.e., group means), but mostly divergent age trajectories in the shape, direction, and spatial distribution of the linear age effect. We conclude that the microstructural properties at the source of spatial distributions of MRI cortical markers can be different from microstructural changes that affect these markers in aging.


Assuntos
Bainha de Mielina , Substância Branca , Humanos , Bainha de Mielina/fisiologia , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta , Envelhecimento
6.
Magn Reson Med ; 90(5): 1762-1775, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37332194

RESUMO

PURPOSE: Imaging biomarkers with increased myelin specificity are needed to better understand the complex progression of neurological disorders. Inhomogeneous magnetization transfer (ihMT) imaging is an emergent technique that has a high degree of specificity for myelin content but suffers from low signal to-noise ratio (SNR). This study used simulations to determine optimal sequence parameters for ihMT imaging for use in high-resolution cortical mapping. METHODS: MT-weighted cortical image intensity and ihMT SNR were simulated using modified Bloch equations for a range of sequence parameters. The acquisition time was limited to 4.5 min/volume. A custom MT-weighted RAGE sequence with center-out k-space encoding was used to enhance SNR at 3 T. Pulsed MT imaging was studied over a range of saturation parameters, and the impact of the turbo factor on the effective ihMT resolution was investigated. 1 mm isotropic ihMTsat maps were generated in 25 healthy adults. RESULTS: Greater SNR was observed for larger number of bursts consisting of 6-8 saturation pulses each, combined with a high readout turbo factor. However, that protocol suffered from a point spread function that was more than twice the nominal resolution. For high-resolution cortical imaging, we selected a protocol with a higher effective resolution at the cost of a lower SNR. We present the first group-average ihMTsat whole-brain map at 1 mm isotropic resolution. CONCLUSION: This study presents the impact of saturation and excitation parameters on ihMTsat SNR and resolution. We demonstrate the feasibility of high-resolution cortical myelin imaging using ihMTsat in less than 20 min.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Adulto , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Bainha de Mielina , Razão Sinal-Ruído , Biomarcadores
7.
J Magn Reson Imaging ; 58(1): 294-300, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36373996

RESUMO

BACKGROUND: The integrity and function of catecholamine neurotransmitter systems can be assessed using neuromelanin-sensitive MRI (NM-MRI). The relevance of this method to neurodegenerative and psychiatric disorders is becoming increasingly evident, and it has potential as a clinical biomarker. PURPOSE: To support future application of NM-MRI as a clinical biomarker by defining the normative range of NM-MRI signal and volume metrics in cognitively normal older adults. STUDY TYPE: Prospective. POPULATION: A total of 152 cognitively normal older adults aged 53-86 years old, including 41 participants who had follow-up NM-MRI data collected 9-16 months later. FIELD STRENGTH/SEQUENCE: A 3.0 T; NM-MRI turbo spin echo and T1-weighted magnetization-prepared rapid acquisition with gradient echo sequences. ASSESSMENT: NM-MRI images were processed to yield summary measures of volume and signal (contrast-to-noise ratio, CNR) for the substantia nigra (SN) and locus coeruleus (LC) using a recently developed software employing a fully automated algorithm. Change in these metrics over time was also assessed. STATISTICAL TESTS: Mean and standard deviation of NM-MRI metrics were calculated; change over time was tested for significance using 1-sample t-tests. P values < 0.05 were considered statistically significant. RESULTS: At baseline SN signal (CNR) was 10.02% (left) and 10.28% (right) and LC signal was 24.71% (left) and 20.42% (right). Baseline SN volume was 576 mm3 (left) and 540 mm3 (right) and LC volume was 6.31 mm3 (left) and 6.30 mm3 (right). The only NM-MRI metric showing significant change was a decrease in left SN volume (t40  = -2.57, P = 0.014). DATA CONCLUSION: We report normative values for NM-MRI signal and volume in the SN and LC of cognitively normal older adults and explore their change over time. These values may help future efforts to use NM-MRI as a clinical biomarker by facilitating identification of patients with extreme NM-MRI values. TECHNICAL EFFICACY STAGE: 1.


Assuntos
Doença de Parkinson , Humanos , Idoso , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Substância Negra/diagnóstico por imagem , Biomarcadores
8.
Magn Reson Med ; 86(4): 2192-2207, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33956348

RESUMO

PURPOSE: In this work, we propose that Δ B1+ -induced errors in magnetization transfer (MT) saturation (MTsat ) maps can be corrected with use of an R1 and B1+ map and through numerical simulations of the sequence. THEORY AND METHODS: One healthy subject was scanned at 3.0T using a partial quantitative MT protocol to estimate the relationship between observed R1 (R1,obs ) and apparent bound pool size ( M0,appB ) in the brain. MTsat values were simulated for a range of B1+ , R1,obs , and M0,appB . An equation was fit to the simulated MTsat , then a linear relationship between R1,obs and M0,appB was generated. These results were used to generate correction factor maps for the MTsat acquired from single-point data. The proposed correction was compared to an empirical correction factor with different MT-preparation schemes. RESULTS: M0,appB was highly correlated with R1,obs (r > 0.96), permitting the use of R1,obs to estimate M0,appB for B1+ correction. All B1+ corrected MTsat maps displayed a decreased correlation with B1+ compared to uncorrected MTsat and MTsat corrected with an empirical factor in the corpus callosum. There was good agreement between the proposed approach and the empirical correction with radiofrequency saturation at 2 kHz, with larger deviations seen when using saturation pulses further off-resonance and in inhomogeneous (ih) MTsat maps. CONCLUSION: The proposed correction decreases the dependence of MTsat on B1+ inhomogeneities. Furthermore, this flexible framework permits the use of different saturation protocols, making it useful for correcting B1+ inhomogeneities in ihMT.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Ondas de Rádio
9.
Magn Reson Med ; 86(2): 738-753, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749017

RESUMO

PURPOSE: Most voxels in white matter contain multiple fiber populations with different orientations and levels of myelination. Conventional T1 mapping measures 1 T1 value per voxel, representing a weighted average of the multiple tract T1 times. Inversion-recovery diffusion-weighted imaging (IR-DWI) allows the T1 times of multiple tracts in a voxel to be disentangled, but the scan time is prohibitively long. Recently, slice-shuffled IR-DWI implementations have been proposed to significantly reduce scan time. In this work, we demonstrate that we can measure tract-specific T1 values in the whole brain using simultaneous multi-slice slice-shuffled IR-DWI at 3T. METHODS: We perform simulations to evaluate the accuracy and precision of our crossing fiber IR-DWI signal model for various fiber parameters. The proposed sequence and signal model are tested in a phantom consisting of crossing asparagus pieces doped with gadolinium to vary T1 , and in 2 human subjects. RESULTS: Our simulations show that tract-specific T1 times can be estimated within 5% of the nominal fiber T1 values. Tract-specific T1 values were resolved in subvoxel 2 fiber crossings in the asparagus phantom. Tract-specific T1 times were resolved in 2 different tract crossings in the human brain where myelination differences have previously been reported; the crossing of the cingulum and genu of the corpus callosum and the crossing of the corticospinal tract and pontine fibers. CONCLUSION: Whole-brain tract-specific T1 mapping is feasible using slice-shuffled IR-DWI at 3T. This technique has the potential to improve the microstructural characterization of specific tracts implicated in neurodevelopment, aging, and demyelinating disorders.


Assuntos
Substância Branca , Encéfalo/diagnóstico por imagem , Corpo Caloso , Imagem de Difusão por Ressonância Magnética , Humanos , Tratos Piramidais , Substância Branca/diagnóstico por imagem
10.
Neuroimage ; 207: 116348, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31715254

RESUMO

In this work we use non-negative matrix factorization to identify patterns of microstructural variance in the human hippocampus. We utilize high-resolution structural and diffusion magnetic resonance imaging data from the Human Connectome Project to query hippocampus microstructure on a multivariate, voxelwise basis. Application of non-negative matrix factorization identifies spatial components (clusters of voxels sharing similar covariance patterns), as well as subject weightings (individual variance across hippocampus microstructure). By assessing the stability of spatial components as well as the accuracy of factorization, we identified 4 distinct microstructural components. Furthermore, we quantified the benefit of using multiple microstructural metrics by demonstrating that using three microstructural metrics (T1-weighted/T2-weighted signal, mean diffusivity and fractional anisotropy) produced more stable spatial components than when assessing metrics individually. Finally, we related individual subject weightings to demographic and behavioural measures using a partial least squares analysis. Through this approach we identified interpretable relationships between hippocampus microstructure and demographic and behavioural measures. Taken together, our work suggests non-negative matrix factorization as a spatially specific analytical approach for neuroimaging studies and advocates for the use of multiple metrics for data-driven component analyses.


Assuntos
Hipocampo/patologia , Processamento de Imagem Assistida por Computador , Neuroimagem , Substância Branca/patologia , Algoritmos , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Neuroimagem/métodos
11.
Hippocampus ; 30(10): 1058-1072, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32485018

RESUMO

Hippocampal circuitry has been posited to be fundamental to positive symptoms in psychosis, but its contributions to other factors important for outcome remains unclear. We hypothesized that longitudinal changes in the hippocampal circuit and concomitant changes of intracortical microstructure are altered in first episode psychosis (FEP) patients and that such changes are associated with negative symptoms and verbal memory. Longitudinal brain scans (2-4 visits over 3-15 months) were acquired for 27 FEP and 29 age- and sex-matched healthy controls. Quantitative T1 maps, sensitive to myelin content, were used to sample the microstructure of the hippocampal subfields and output circuitry (fimbria, alveus, fornix, mammillary bodies), and intracortical regions. Dynamic anatomical covariance in pair-wise regional trajectories were assessed for each subject, and graph theory was used to calculate a participation coefficient metric that quantifies the similarity/divergence between hippocampal and intracortical microstructure. The mean participation coefficient of the hippocampus was significantly reduced in FEP patients compared with controls, reflecting differences in output hippocampal regions. Importantly, lower participation coefficient of the hippocampal circuit was associated with worse negative symptoms, a relationship that was mediated by changes in verbal memory. This study provides evidence for reduced hippocampal centrality in FEP and concomitant changes in intracortical anatomy. Myelin-rich output regions of the hippocampus may be an important biological trigger in early psychosis, with cascading effects on broader cortical networks and resultant clinical profiles.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Transtornos Psicóticos/diagnóstico por imagem , Adolescente , Adulto , Córtex Cerebral/fisiologia , Feminino , Seguimentos , Hipocampo/fisiologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/fisiologia , Transtornos Psicóticos/psicologia , Aprendizagem Verbal/fisiologia
12.
Hum Brain Mapp ; 40(18): 5269-5288, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31452289

RESUMO

While numerous studies have used magnetic resonance imaging (MRI) to elucidate normative age-related trajectories in subcortical structures across the human lifespan, there exists substantial heterogeneity among different studies. Here, we investigated the normative relationships between age and morphology (i.e., volume and shape), and microstructure (using the T1-weighted/T2-weighted [T1w/T2w] signal ratio as a putative index of myelin and microstructure) of the striatum, globus pallidus, and thalamus across the adult lifespan using a dataset carefully quality controlled, yielding a final sample of 178 for the morphological analyses, and 162 for the T1w/T2w analyses from an initial dataset of 253 healthy subjects, aged 18-83. In accordance with previous cross-sectional studies of adults, we observed age-related volume decrease that followed a quadratic relationship between age and bilateral striatal and thalamic volumes, and a linear relationship in the globus pallidus. Our shape indices consistently demonstrated age-related posterior and medial areal contraction bilaterally across all three structures. Beyond morphology, we observed a quadratic inverted U-shaped relationship between T1w/T2w signal ratio and age, with a peak value occurring in middle age (at around 50 years old). After permutation testing, the Akaike information criterion determined age relationships remained significant for the bilateral globus pallidus and thalamus, for both the volumetric and T1w/T2w analyses. Our findings serve to strengthen and expand upon previous volumetric analyses by providing a normative baseline of morphology and microstructure of these structures to which future studies investigating patients with various disorders can be compared.


Assuntos
Envelhecimento , Corpo Estriado/diagnóstico por imagem , Globo Pálido/diagnóstico por imagem , Longevidade , Imageamento por Ressonância Magnética/tendências , Tálamo/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Corpo Estriado/fisiologia , Feminino , Globo Pálido/fisiologia , Voluntários Saudáveis , Humanos , Longevidade/fisiologia , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Tálamo/fisiologia , Adulto Jovem
13.
Hum Brain Mapp ; 39(2): 971-984, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29164798

RESUMO

Neuropathological and in vivo brain imaging studies agree that the cornu ammonis 1 and subiculum subfields of the hippocampus are most vulnerable to atrophy in the prodromal phases of Alzheimer's disease (AD). However, there has been limited investigation of the structural integrity of the components of the hippocampal circuit, including subfields and extra-hippocampal white matter structure, in relation to the progression of well-accepted cerebrospinal fluid (CSF) biomarkers of AD, amyloid-ß 1-42 (Aß) and total-tau (tau). We investigated these relationships in 88 aging asymptomatic individuals with a parental or multiple-sibling familial history of AD. Apolipoprotein (APOE) ɛ4 risk allele carriers were identified, and all participants underwent cognitive testing, structural magnetic resonance imaging, and lumbar puncture for CSF assays of tau, phosphorylated-tau (p-tau) and Aß. Individuals with a reduction in CSF Aß levels (an indicator of amyloid accretion into neuritic plaques) as well as evident tau pathology (believed to be linked to neurodegeneration) exhibited lower subiculum volume, lower fornix microstructural integrity, and a trend towards lower cognitive score than individuals who showed only reduction in CSF Aß. In contrast, persons with normal levels of tau showed an increase in structural MR markers in relation to declining levels of CSF Aß. These results suggest that hippocampal subfield volume and extra-hippocampal white matter microstructure demonstrate a complex pattern where an initial volume increase is followed by decline among asymptomatic individuals who, in some instances, may be a decade or more away from onset of cognitive or functional impairment.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Idoso , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Feminino , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Vias Neurais/diagnóstico por imagem , Sintomas Prodrômicos , Substância Branca/diagnóstico por imagem , Proteínas tau/líquido cefalorraquidiano
14.
Cereb Cortex ; 27(2): 981-997, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28184415

RESUMO

Research in the macaque monkey suggests that cortical areas with similar microstructure are more likely to be connected. Here, we examine this link in the human cerebral cortex using 2 magnetic resonance imaging (MRI) measures: quantitative  T1 maps, which are sensitive to intracortical myelin content and provide an in vivo proxy for cortical microstructure, and resting-state functional connectivity. Using ultrahigh-resolution MRI at 7 T and dedicated image processing tools, we demonstrate a systematic relationship between T1-based intracortical myelin content and functional connectivity. This effect is independent of the proximity of areas. We employ nonlinear dimensionality reduction to characterize connectivity components and identify specific aspects of functional connectivity that are linked to myelin content. Our results reveal a consistent spatial pattern throughout different analytic approaches. While functional connectivity and myelin content are closely linked in unimodal areas, the correspondence is lower in transmodal areas, especially in posteromedial cortex and the angular gyrus. Our findings are in agreement with comprehensive reports linking histologically assessed microstructure and connectivity in different mammalian species and extend them to the human cerebral cortex in vivo.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Bainha de Mielina/metabolismo , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia , Descanso , Software , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto Jovem
15.
Hum Brain Mapp ; 38(7): 3691-3703, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28462512

RESUMO

Magnetic resonance imaging (MRI) studies in humans have reported that the T1 -weighted signal in the cerebral cortex follows an inverted "U" trajectory over the lifespan. Here, we investigated the T1 -weighted signal trajectory from late adolescence to middle adulthood in humans to characterize the age range when mental illnesses tend to present, and efficacy of treatments are evaluated. We compared linear to quadratic predictors of age on signal in 67 healthy individuals, 17-45 years old. We investigated », ½, and ¾ depths in the cortex representing intracortical myelin (ICM), in the superficial white matter (SWM), and in a reference deep white matter tract. We found that the quadratic fit was superior in all regions of the cortex, while signal in the SWM and deep white matter showed no global dependence on age over this range. The signal trajectory in any region followed a similar shape regardless of cortical depth. The quadratic fit was analyzed in 70 cortical regions to obtain the age of maximum signal intensity. We found that visual, cingulate, and left ventromedial prefrontal cortices peak first around 34 years old, whereas motor and premotor areas peak latest at ∼38 years. Our analysis suggests that ICM trajectories over this range can be modeled well in small cohorts of subjects using quadratic functions, which are amenable to statistical analysis, thus suitable for investigating regional changes in ICM with disease. This study highlights a novel approach to map ICM trajectories using an age range that coincides with the onset of many mental illnesses. Hum Brain Mapp 38:3691-3703, 2017. © 2017 Wiley Periodicals, Inc.

16.
J Magn Reson Imaging ; 46(6): 1673-1682, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28301086

RESUMO

PURPOSE: B1 mapping is important for many quantitative imaging protocols, particularly those that include whole-brain T1 mapping using the variable flip angle (VFA) technique. However, B1 mapping sequences are not typically available on many magnetic resonance imaging (MRI) scanners. The aim of this work was to demonstrate that B1 mapping implemented using standard scanner product pulse sequences can produce B1 (and VFA T1 ) maps comparable in quality and acquisition time to advanced techniques. MATERIALS AND METHODS: Six healthy subjects were scanned at 3.0T. An interleaved multislice spin-echo echo planar imaging double-angle (EPI-DA) B1 mapping protocol, using a standard product pulse sequence, was compared to two alternative methods (actual flip angle imaging, AFI, and Bloch-Siegert shift, BS). Single-slice spin-echo DA B1 maps were used as a reference for comparison (Ref. DA). VFA flip angles were scaled using each B1 map prior to fitting T1 ; the nominal flip angle case was also compared. RESULTS: The pooled-subject voxelwise correlation (ρ) for B1 maps (BS/AFI/EPI-DA) relative to the reference B1 scan (Ref. DA) were ρ = 0.92/0.95/0.98. VFA T1 correlations using these maps were ρ = 0.86/0.88/0.96, much better than without B1 correction (ρ = 0.53). The relative error for each B1 map (BS/AFI/EPI-DA/Nominal) had 95th percentiles of 5/4/3/13%. CONCLUSION: Our findings show that B1 mapping implemented using product pulse sequences can provide excellent quality B1 (and VFA T1 ) maps, comparable to other custom techniques. This fast whole-brain measurement (∼2 min) can serve as an excellent alternative for researchers without access to advanced B1 pulse sequences. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1673-1682.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Imagem Ecoplanar/métodos , Feminino , Humanos , Masculino , Valores de Referência , Reprodutibilidade dos Testes
17.
Magn Reson Med ; 73(2): 514-22, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24578189

RESUMO

PURPOSE: There are many T1 mapping methods available, each of them validated in phantoms and reporting excellent agreement with literature. However, values in literature vary greatly, with T1 in white matter ranging from 690 to 1100 ms at 3 Tesla. This brings into question the accuracy of one of the most fundamental measurements in quantitative MRI. Our goal was to explain these variations and look into ways of mitigating them. THEORY AND METHODS: We evaluated the three most common T1 mapping methods (inversion recovery, Look-Locker, and variable flip angle) through Bloch simulations, a white matter phantom and the brains of 10 healthy subjects (single-slice). We pooled the T1 histograms of the subjects to determine whether there is a sequence-dependent bias and whether it is reproducible across subjects. RESULTS: We found good agreement between the three methods in phantoms, but poor agreement in vivo, with the white matter T1 histogram peak in healthy subjects varying by more than 30% depending on the method used. We also found that the pooled brain histograms displayed three distinct white matter peaks, with Look-Locker consistently underestimating, and variable flip angle overestimating the inversion recovery T1 values. The Bloch simulations indicated that incomplete spoiling and inaccurate B1 mapping could account for the observed differences. CONCLUSION: We conclude that the three most common T1 mapping protocols produce stable T1 values in phantoms, but not in vivo. To improve the accuracy of T1 mapping, we recommend that sites perform in vivo validation of their T1 mapping method against the inversion recovery reference method, as the first step toward developing a robust calibration scheme.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
18.
Nat Commun ; 15(1): 4706, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830849

RESUMO

The neuromodulatory subcortical nuclei within the isodendritic core (IdC) are the earliest sites of tauopathy in Alzheimer's disease (AD). They project broadly throughout the brain's white matter. We investigated the relationship between IdC microstructure and whole-brain white matter microstructure to better understand early neuropathological changes in AD. Using multiparametric quantitative magnetic resonance imaging we observed two covariance patterns between IdC and white matter microstructure in 133 cognitively unimpaired older adults (age 67.9 ± 5.3 years) with familial risk for AD. IdC integrity related to 1) whole-brain neurite density, and 2) neurite orientation dispersion in white matter tracts known to be affected early in AD. Pattern 2 was associated with CSF concentration of phosphorylated-tau, indicating AD specificity. Apolipoprotein-E4 carriers expressed both patterns more strongly than non-carriers. IdC microstructure variation is reflected in white matter, particularly in AD-affected tracts, highlighting an early mechanism of pathological development.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Tauopatias , Substância Branca , Proteínas tau , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/metabolismo , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Doença de Alzheimer/diagnóstico por imagem , Tauopatias/diagnóstico por imagem , Tauopatias/metabolismo , Tauopatias/patologia , Tauopatias/genética , Tauopatias/líquido cefalorraquidiano , Proteínas tau/metabolismo , Proteínas tau/líquido cefalorraquidiano , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Neuritos/metabolismo , Neuritos/patologia
19.
Netw Neurosci ; 7(4): 1363-1388, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38144691

RESUMO

A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.

20.
Brain Struct Funct ; 227(3): 793-807, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34704176

RESUMO

In motor learning, sequence specificity, i.e. the learning of specific sequential associations, has predominantly been studied using task-based fMRI paradigms. However, offline changes in resting state functional connectivity after sequence-specific motor learning are less well understood. Previous research has established that plastic changes following motor learning can be divided into stages including fast learning, slow learning and retention. A description of how resting state functional connectivity after sequence-specific motor sequence learning (MSL) develops across these stages is missing. This study aimed to identify plastic alterations in whole-brain functional connectivity after learning a complex motor sequence by contrasting an active group who learned a complex sequence with a control group who performed a control task matched for motor execution. Resting state fMRI and behavioural performance were collected in both groups over the course of 5 consecutive training days and at follow-up after 12 days to encompass fast learning, slow learning, overall learning and retention. Between-group interaction analyses showed sequence-specific decreases in functional connectivity during overall learning in the right supplementary motor area (SMA). We found that connectivity changes in a key region of the motor network, the superior parietal cortex (SPC) were not a result of sequence-specific learning but were instead linked to motor execution. Our study confirms the sequence-specific role of SMA that has previously been identified in online task-based learning studies, and extends it to resting state network changes after sequence-specific MSL.


Assuntos
Mapeamento Encefálico , Córtex Motor , Aprendizagem , Imageamento por Ressonância Magnética , Córtex Motor/diagnóstico por imagem , Descanso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA