RESUMO
Enterobacter sp. LU1, a wild-type bacterium originating from goat rumen, proved to be a potential succinic acid producer in previous studies. Here, the first complete genome of this strain was obtained and analyzed from a biotechnological perspective. A hybrid sequencing approach combining short (Illumina MiSeq) and long (ONT MinION) reads allowed us to obtain a single continuous chromosome 4,636,526 bp in size, with an average 55.6% GC content that lacked plasmids. A total of 4425 genes, including 4283 protein-coding genes, 25 ribosomal RNA (rRNA)-, 84 transfer RNA (tRNA)-, and 5 non-coding RNA (ncRNA)-encoding genes and 49 pseudogenes, were predicted. It has been shown that genes involved in transport and metabolism of carbohydrates and amino acids and the transcription process constitute the major group of genes, according to the Clusters of Orthologous Groups of proteins (COGs) database. The genetic ability of the LU1 strain to metabolize a wide range of industrially relevant carbon sources has been confirmed. The genome exploration indicated that Enterobacter sp. LU1 possesses all genes that encode the enzymes involved in the glycerol metabolism pathway. It has also been shown that succinate can be produced as an end product of fermentation via the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. The transport system involved in succinate excretion into the growth medium and the genes involved in the response to osmotic and oxidative stress have also been recognized. Furthermore, three intact prophage regions ~70.3 kb, ~20.9 kb, and ~49.8 kb in length, 45 genomic islands (GIs), and two clustered regularly interspaced short palindromic repeats (CRISPR) were recognized in the genome. Sequencing and genome analysis of Enterobacter sp. LU1 confirms many earlier results based on physiological experiments and provides insight into their genetic background. All of these findings illustrate that the LU1 strain has great potential to be an efficient platform for bio-based succinate production.
Assuntos
Enterobacter/genética , Enterobacter/metabolismo , Genoma Bacteriano/genética , Rúmen/microbiologia , Ácido Succínico/metabolismo , Animais , Ciclo do Ácido Cítrico/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Fermentação/genética , Ilhas Genômicas/genética , Genômica/métodos , Glicerol/metabolismo , Glioxilatos/metabolismo , Cabras/microbiologia , Pressão Osmótica/fisiologia , Estresse Oxidativo/genética , Filogenia , Prófagos/genéticaRESUMO
The newly-isolated strain Enterobacter sp. LU1, which has previously been shown to be an effective producer of succinic acid on glycerol with the addition of lactose, was used for further intensive works aimed at improving the production parameters of the said process. The introduction of an initial stage of gentle culture aeration allowed almost 47 g/L of succinic acid to be obtained after 168 h of incubation, which is almost two times faster than the time previously taken to obtain this amount. Furthermore, the replacement of glycerol with crude glycerin and the replacement of lactose with whey permeate allowed the final concentration of succinic acid to be increased to 54 g/L. Considering the high content of yeast extract (YE) in the culture medium, tests were also performed with a reduced YE content via its partial substitution with urea. Although this substitution led to a deterioration of the kinetic parameters of the production process, using the fed-batch strategy, it allowed a succinic acid concentration of 69 g/L to be obtained in the culture medium, the highest concentration ever achieved using this process. Furthermore, the use of microaerophilic conditions meant that the addition of lactose to the medium was not required, with 37 g/L of succinic acid being produced on crude glycerol alone.
Assuntos
Enterobacter/crescimento & desenvolvimento , Glicerol/farmacologia , Ácido Succínico/metabolismo , Proteínas do Soro do Leite/farmacologiaRESUMO
Arabitol is a polyalcohol which has about 70% of the sweetness of sucrose and an energy density of 0.2 kcal/g. Similarly to xylitol, it can be used in the food and pharmaceutical industries as a natural sweetener, a texturing agent, a dental caries reducer, and a humectant. Biotechnological production of arabitol from sugars represents an interesting alternative to chemical production. The yeast Scheffersomyces shehatae strain 20BM-3 isolated from rotten wood was screened for its ability to produce arabitol from L-arabinose, glucose, and xylose. This isolate, cultured at 28°C and 150 rpm, secreted 4.03 ± 0.00 to 7.97 ± 0.67 g/l of arabitol from 17-30 g/l of L-arabinose assimilated from a medium containing 20-80 g/l of this pentose with yields of 0.24 ± 0.00 to 0.36 ± 0.02 g/g. An optimization study demonstrated that pH 4.0, 32°C, and a shaking frequency of 150 rpm were the optimum conditions for arabitol production by the investigated strain. Under these conditions, strain 20BM-3 produced 6.2 ± 0.17 g/l of arabitol from 17.5 g/l of arabinose after 4 days with a yield of 0.35 ± 0.01 g/g. This strain also produced arabitol from glucose, giving much lower yields, but did not produce it from xylose. The new strain can be successfully used for arabitol production from abundantly available sugars found in plant biomass.
Assuntos
Arabinose/metabolismo , Candida/metabolismo , Glucose/metabolismo , Álcoois Açúcares/metabolismo , Xilose/metabolismo , Biotransformação/fisiologia , Candida/classificação , Candida/isolamento & purificação , Madeira/microbiologiaRESUMO
BACKGROUND: Members of the genus Bifidobacterium are anaerobic Gram-positive Actinobacteria, which are natural inhabitants of human and animal gastrointestinal tract. Certain bifidobacteria are frequently used as food additives and probiotic pharmaceuticals, because of their various health-promoting properties. Due to the enormous demand on probiotic bacteria, manufacture of high-quality products containing living microorganisms requires rapid and accurate identification of specific bacteria. Additionally, isolation of new industrial bacteria from various environments may lead to multiple isolations of the same strain, therefore, it is important to apply rapid, low-cost and effective procedures differentiating bifidobacteria at the intra-species level. The identification of new isolates using microbiological and biochemical methods is difficult, but the accurate characterization of isolated strains may be achieved using a polyphasic approach that includes classical phenotypic methods and molecular procedures. However, some of these procedures are time-consuming and cumbersome, particularly when a large group of new isolates is typed, while some other approaches may have too low discriminatory power to distinguish closely related isolates obtained from similar sources. RESULTS: This work presents the evaluation of the discriminatory power of four molecular methods (ARDRA, RAPD-PCR, rep-PCR and SDS-PAGE fingerprinting) that are extensively used for fast differentiation of bifidobacteria up to the strain level. Our experiments included 17 reference strains and showed that in comparison to ARDRA, genotypic fingerprinting procedures (RAPD and rep-PCR) seemed to be less reproducible, however, they allowed to differentiate the tested microorganisms even at the intra-species level. In general, RAPD and rep-PCR have similar discriminatory power, though, in some instances more than one oligonucleotide needs to be used in random amplified polymorphic DNA analysis. Moreover, the results also demonstrated a high discriminatory power of SDS-PAGE fingerprinting of whole-cell proteins. On the other hand, the protein profiles obtained were rather complex, and therefore, difficult to analyze. CONCLUSIONS: Among the tested procedures, rep-PCR proved to be the most effective and reliable method allowing rapid differentiation of Bifidobacterium strains. Additionally, the use of the BOXA1R primer in the differentiation of 21 Bifidobacterium strains, newly isolated from infant feces, demonstrated slightly better discriminatory power in comparison to PCR reactions with the (GTG)5 oligonucleotide. Thus, BOX-PCR turned out to be the most appropriate and convenient molecular technique in differentiating Bifidobacterium strains at all taxonomic levels.
Assuntos
Técnicas de Tipagem Bacteriana/métodos , Bifidobacterium/classificação , Intestinos/microbiologia , Tipagem Molecular/métodos , Animais , Bifidobacterium/genética , Bifidobacterium/isolamento & purificação , Impressões Digitais de DNA/métodos , Primers do DNA , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Eletroforese em Gel de Poliacrilamida/métodos , Fezes/microbiologia , Trato Gastrointestinal/microbiologia , Humanos , Filogenia , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Fragmento de Restrição , Probióticos/classificação , Probióticos/isolamento & purificação , RNA Ribossômico 16S/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico/métodosRESUMO
This study analyzes the application of degenerative primers for the screening of bile salt hydrolase-encoding genes (bsh) in various intestinal bifidobacteria. In the first stage, the design and evaluation of the universal PCR primers for amplifying the partial coding sequence of bile salt hydrolase in bifidobacteria were performed. The amplified bsh gene fragments were sequenced and the obtained sequences were compared to the bsh genes present in GenBank. The determined results showed the utility of the designed PCR primers for the amplification of partial gene encoding bile salt hydrolase in different intestinal bifidobacteria. Moreover, sequence analysis revealed that bile salt hydrolase-encoding genes may be used as valuable molecular markers for phylogenetic studies and identification of even closely related members of the genus Bifidobacterium.
Assuntos
Amidoidrolases/genética , Bifidobacterium/enzimologia , Bifidobacterium/genética , Variação Genética , Bifidobacterium/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/genética , Trato Gastrointestinal/microbiologia , Humanos , Dados de Sequência Molecular , Análise de Sequência de DNARESUMO
A proteinase produced by the human gastrointestinal isolate Lactobacillus rhamnosus strain OXY was identified and characterized. The prtR2 gene coding for proteinase activity was detected in the examined strain. The PCR primers used were constructed on the basis of the sequence of the prtR2 proteinase gene from Lactobacillus rhamnosus GG. The enzyme was purified by fast protein liquid chromatography (FPLC) using CM-Sepharose Fast Flow and Sephacryl S-300 columns. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the enzyme had a relatively low molecular mass of 60 kD. Protease activity was observed at a pH range from 6.5 to 7.5 with optimum k(cat)/K(m) values at pH 7.0 and 40°C. Maximum proteolytic activity (59 U mL(-1)) was achieved after 48 hr of cultivation. The activity of the enzyme was inhibited only by irreversible inhibitors specific for serine proteinases (PMSF and 3,4-dichloro-isocumarine), suggesting that the enzyme was a serine proteinase. Proteinase activity was increased by Ca(2+) and Mg(2+), and inhibited by Cu(2+), Zn(2+), Cd(2+), and Fe(2+).
Assuntos
Proteínas de Bactérias/isolamento & purificação , Lacticaseibacillus rhamnosus/química , Peptídeo Hidrolases/isolamento & purificação , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Cátions Bivalentes/química , Cromatografia em Gel , Cromatografia por Troca Iônica , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Trato Gastrointestinal/microbiologia , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lacticaseibacillus rhamnosus/enzimologia , Lacticaseibacillus rhamnosus/isolamento & purificação , Peso Molecular , Peptídeo Hidrolases/química , Reação em Cadeia da Polimerase , Inibidores de Serina Proteinase/químicaRESUMO
L-arabitol is used in the food and pharmaceutical industries. It can be secreted by genetically modified Saccharomyces cerevisiae carrying the genes responsible for pentose metabolism in yeast cells. The process of the biotransformation of L-arabinose to arabitol is highly dependent on culture conditions. The aim of this investigation was to use statistical response surface methodology (RSM) for optimization of biotransformation of L-arabinose to arabitol by a karyoductant of S. cerevisiae V30 and Pichia stipitis CCY 39501, named SP-K7. Batch cultures of yeast were performed according to a Plackett-Burman design, and three factors, rotation speed, L-arabinose concentration, and temperature, were chosen for a central composite design (CCD) applied in order to optimize the production of the polyol by the karyoductant. On the basis of results obtained using 20 combinations of batch cultures of karyoductant SP-K7, the optimal levels of the factors were determined as: rotation speed 150 rpm, concentration of L-arabinose 32.5 g/l, and temperature 28 degrees C. In such conditions, the predicted concentration of arabitol after two days of incubation of SP-K7 should be 18.367 g/l. The value of R2 = 0.93195 suggested that this model was well-fitted to the experimental data. A verification of the model in experimental conditions confirmed its usefulness.
Assuntos
Proteínas Fúngicas/metabolismo , Pichia/metabolismo , Saccharomyces cerevisiae/metabolismo , Álcoois Açúcares/metabolismo , Arabinose/metabolismo , Biotecnologia , Meios de Cultura , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/fisiologia , Modelos Biológicos , Pichia/classificação , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genéticaRESUMO
This paper describes a simple and efficient method of isolation of a plullulanase type I from amylolytic lactic acid bacteria (ALAB). Extracellular pullulanase type I was purified from a cell-free culture supernatant of Lactococcus lactis IBB 500 by using ammonium sulfate fractionation and dialysis (instead of ultrafiltration), and ion-exchange chromatography with CM Sepharose FF followed by gel filtration chromatography with Sephadex G-150 as the final step. A final purification factor of 14.36 was achieved. The molecular mass of the enzyme was estimated as 73.9 kD. The optimum temperature for the enzyme activity was 45°C and the optimum pH was 4.5. Pullulanase activity was increased by addition Co(2+) and completely inhibited by Hg(2+). The enzyme activity was specifically directed toward α-1,6 glycosidic linkages of pullulan giving maltotriose units. Enzymatic hydrolysis of starch and amylose produced a mixture of maltose and maltotriose.
Assuntos
Fracionamento Químico/métodos , Cromatografia por Troca Iônica/métodos , Glicosídeo Hidrolases/isolamento & purificação , Glicosídeo Hidrolases/metabolismo , Lactococcus lactis/enzimologia , Proteínas de Bactérias , Cromatografia Líquida de Alta Pressão , Estabilidade Enzimática , Glicosídeo Hidrolases/química , Concentração de Íons de Hidrogênio , Lactococcus lactis/metabolismo , Peso Molecular , Especificidade por Substrato , TemperaturaRESUMO
Response surface methodology (RSM) was employed to study the effects of various medium components on biomass production by Lactobacillus rhamnosus E/N. This strain is commonly used in the pharmaceutical and food industries due to its beneficial effect on the human gut and general health. The best medium composition derived from RSM regression was (in g/l) glucose 15.44, sodium pyruvate 3.92, meat extract 8.0, potassium phosphate 1.88, sodium acetate 4.7, and ammonium citrate 1.88. With this medium composition biomass production was 23 g/l of dry cell weight after 18 h of cultivation in bioreactor conditions, whereas on MRS the yield of biomass was 21 g/l of dry cell weight. The cost of 1 g of biomass obtained on MRS broth was calculated at the level of 0.44 whereas on the new optimal medium it was 25% lower. It may be concluded then, that the new medium, being cheaper than the control MRS allows large scale commercial cultivation of the L. rhamnosus strain. This study is of relevance to food industry because the possibility to obtain high yield of bacterial biomass is necessary step in manufacturing of probiotic food.
RESUMO
An extracellular alpha-amylase from Lactococcus lactis IBB500 was purified and characterized. The optimum conditions for the enzyme activity were pH 4.5, temperature of 35 degrees C, enzyme molecular mass of 121 kDa. The genome analysis and a plasmid curing experiment indicated that amy+ genes were located in a plasmid of 30 kb. An analysis of phylogenetic relationships strongly supported a hypothesis of horizontal gene transfer. A strong homology was found for the peptides with the sequence of alpha-amylases from Ralstonia pikettii and Ralstonia solanacearum. The protein of alpha-amylase activity purified in this study is the first one described for the Lactococcus lactis species, and this paper is the first report on Lactococcus lactis strain as a microorganism belonging to amylolytic lactic acid bacteria (ALAB).
Assuntos
Proteínas de Bactérias/metabolismo , Lactococcus lactis/enzimologia , alfa-Amilases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transferência Genética Horizontal , Genes Bacterianos/genética , Lactococcus lactis/genética , Peso Molecular , Filogenia , Plasmídeos , Homologia de Sequência de Aminoácidos , alfa-Amilases/química , alfa-Amilases/genéticaRESUMO
Response surface methodology was used to optimize media components such as carbon and nitrogen (simple and complex) sources, mineral agents and growth factors (B vitamins, amino acids) for enhancing the biomass production of Lactobacillus rhamnosus PEN. For screening experiment the following carbon sources were selected: glucose, glucose+pyruvate, glucose+citrate, glucose+lactate, galactose, fructose, lactose, sucrose, maltose, lactulose, fructooligosaccharides, maltodextrins DP 4-7 and DP 13-17. Nitrogen sources such as yeast extract, meat extract and peptone K were used in lower concentrations than in MRS medium which served as a control. All experiments were run at 37 degrees C for 24-48 h under stationary conditions. Constituents chosen after the first screening experiments were further screened by the Plackett-Burman design. Glucose and sodium pyruvate, meat extract, potassium phosphate, sodium acetate, and ammonium citrate were chosen as promising medium components for further optimization studies. By solving the regression equation and analyzing the response surface carton, optimal concentrations of the components were determined as: glucose (13.4 g/l), sodium pyruvate (3.4 g/l), meat extract (7.2 g/l), potassium phosphate (2.0 g/I), sodium acetate (5.0 g/1) and ammonium citrate (2.0 g/l). In comparison to MRS broth the optimal medium contained fewer ingredients and in modified amounts but Lb. ihamnosus PEN showed better growth activity. Biomass concentration (as dry cell weight) of bacteria cultivated in optimal medium at bioreactor conditions was 5.5 g/l after 16 h of incubation, being higher in comparison with bacterial growth in MRS medium (1.9 g/l) under the same conditions. Moreover, the new medium was less expensive.
Assuntos
Meios de Cultura/química , Lacticaseibacillus rhamnosus/química , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Meios de Cultura/economia , Meios de Cultura/metabolismo , Análise Fatorial , Lacticaseibacillus rhamnosus/metabolismo , Modelos EstatísticosRESUMO
BACKGROUND: Succinic acid (SA), a valuable chemical compound with a broad range of industrial uses, has become a subject of global interest in recent years. The bio-based production of SA by highly efficient microbial producers from renewable feedstock is significantly important, regarding the current trend of sustainable development. RESULTS: In this study, a novel bacterial strain, LU2, was isolated from cow rumen and recognized as an efficient producer of SA from lactose. Proteomic and genetic identifications as well as phylogenetic analysis were performed, and strain LU2 was classified as an Enterobacter aerogenes species. The optimal conditions for SA production were 100 g/L lactose, 10 g/L yeast extract, and 20% inoculum at pH 7.0 and 34 °C. Under these conditions, approximately 51.35 g/L SA with a yield of 53% was produced when batch fermentation was conducted in a 3-L stirred bioreactor. When lactose was replaced with whey permeate, the highest SA concentration of 57.7 g/L was achieved with a yield and total productivity of 62% and 0.34 g/(L*h), respectively. The highest productivity of 0.67 g/(L*h) was observed from 48 to 72 h of batch fermentation, when E. aerogenes LU2 produced 16.23 g/L SA. CONCLUSIONS: This study shows that the newly isolated strain E. aerogenes LU2 has great potential as a new biocatalyst for producing SA from whey permeate.
RESUMO
Enterobacter aerogenes LU2 was isolated from cow rumen and recognized as a potential succinic acid producer in our previous study. Here, we present the first complete genome sequence of this new, wild strain and report its basic genetic features from a biotechnological perspective. The MinION single-molecule nanopore sequencer supported by the Illumina MiSeq platform yielded a circular 5,062,651 bp chromosome with a GC content of 55% that lacked plasmids. A total of 4,986 genes, including 4,741 protein-coding genes, 22 rRNA-, 86 tRNA-, and 10 ncRNA-encoding genes and 127 pseudogenes, were predicted. The genome features of the studied strain and other Enterobacteriaceae strains were compared. Functional studies on the genome content, metabolic pathways, growth, and carbon transport and utilization were performed. The genomic analysis indicates that succinic acid can be produced by the LU2 strain through the reductive branch of the tricarboxylic acid cycle (TCA) and the glyoxylate pathway. Antibiotic resistance genes were determined, and the potential for bacteriocin production was verified. Furthermore, one intact prophage region of length ~31,9 kb, 47 genomic islands (GIs) and many insertion sequences (ISs) as well as tandem repeats (TRs) were identified. No clustered regularly interspaced short palindromic repeats (CRISPRs) were found. Finally, comparative genome analysis with well-known succinic acid producers was conducted. The genome sequence illustrates that the LU2 strain has several desirable traits, which confirm its potential to be a highly efficient platform for the production of bulk chemicals.
Assuntos
Vias Biossintéticas/genética , Enterobacter aerogenes/metabolismo , Microbiologia Industrial , Rúmen/microbiologia , Ácido Succínico/metabolismo , Animais , Bovinos , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Enterobacter aerogenes/genética , Genoma Bacteriano , Genômica , Sequenciamento Completo do Genoma/métodosRESUMO
The ability of Rhizopus oryzae to produce fumaric acid in the presence of glycerol and/or various monosaccharides as carbon sources was examined for seventeen different strains of this fungi. These strains were tested in shake-flask cultures on media containing glycerol and seven different carbohydrates, including glucose, fructose, galactose, mannose, xylose, arabinose, and rhamnose. An interesting and applicationally useful phenomenon was observed. This work presents a new approach to the conventional microbiological method of producing fumaric acid. In the presence of 40 g/l glycerol as the sole carbon source, fumaric acid production reached 0.16-6.1 g/l after 192 h. When monosaccharides were used as a single carbon source, the maximum fumaric acid concentration was much higher; for example, 19.8 g/l was achieved when 40 g/l xylose was used. In the co-fermentation of xylose (40 g/l) and glycerol (20 g/l), post-culture broth contained approx. 28.0 g/l of fumaric acid with a process yield of 0.90 g/g after 168 h. The production of fumaric acid by Rhizopus oryzae was also increased in the dual presence of glycerol and monosaccharides like fructose, galactose, and mannose. However, results obtained on glucose-glycerol-based medium did not follow this trend, showing instead complete utilization of glucose with significant glycerol consumption, but unexpectedly low final amounts of fumaric acid and process yields. Understanding how Rhizopus oryzae utilize various carbon sources may provide alternative avenues of fumaric acid fermentation.
RESUMO
BACKGROUND: Lactobacillus rhamnosus Pen is a human endogenous strain with well-documented health promoting properties that is used for production of probiotics. It has a long safety history of application, and its effectiveness in the prevention of antibiotic-associated diarrhoea has also been confirmed in clinical trials. RESULTS: Here we present the complete genome sequence of L. rhamnosus Pen, which consists of a circular 2,884,4966-bp chromosome with a GC content of 46.8%. Within 2907 open reading frames (ORFs), genes involved with probiotic properties were identified. A CRISPR locus, consisting of a 1092-nt region with 16 spacers, was also detected. Finally, an intact prophage of ~ 40.7 kb, 57 ORFs, GC content 44.8% was identified. CONCLUSIONS: Genomic analysis confirmed the probiotic properties of L. rhamnosus Pen and may indicate new biotechnological applications of this industrially important strain.
RESUMO
Enterobacter sp. LU1 could efficiently convert glycerol to succinic acid under anaerobic conditions after the addition of lactose. In this study, media constituents affecting both Enterobacter sp. LU1 biomass and succinic acid production were investigated employing response surface methodology (RSM) with central composite design. Statistical methods led to the development of an efficient and inexpensive microbiological media based on crude glycerol, whey permeate as carbon sources and urea as a nitrogen source. The optimized production of bacterial biomass in aerobic conditions was predicted and the interactive effects between crude glycerol, urea and magnesium sulfate were investigated. As a result, a model for predicting the concentration of bacterial biocatalyst biomass was developed with crude glycerol as a sole carbon source. In addition, it was observed that the interactive effect between crude glycerol and urea was statistically significant. Response surface methodology was also employed to develop the model for predicting the concentration of succinic acid produced. Validity of the model was confirmed during verification experiments wherein actual results differed from predicted values by 0.77%. The applied statistical methods proved the feasibility for anaerobic succinic acid production on crude glycerol without expensive yeast extract addition. In conclusion, the RSM method can provide valuable information for succinic acid scale-up fermentation using Enterobacter sp. LU1.
RESUMO
Succinic acid is an important C4-building chemical platform for many applications. A novel succinic acid-producing bacterial strain was isolated from goat rumen. Phylogenetic analysis based on the 16S rRNA sequence and physiological analysis indicated that the strain belongs to the genus Enterobacter. This is the first report of a wild bacterial strain from the genus Enterobacter that is capable of efficient succinic acid production. Co-fermentation of glycerol and lactose significantly improved glycerol utilization under anaerobic conditions, debottlenecking the utilization pathway of this valuable biodiesel waste product. Succinic acid production reached 35 g l-1 when Enterobacter sp. LU1 was cultured in medium containing 50 g l-1 of glycerol and 25 g l-1 of lactose as carbon sources.
Assuntos
Enterobacter/metabolismo , Glicerol/metabolismo , Lactose/metabolismo , Ácido Succínico/metabolismo , Aerobiose , Animais , Técnicas de Tipagem Bacteriana , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Enterobacter/classificação , Enterobacter/genética , Enterobacter/isolamento & purificação , Fermentação , Cabras , Filogenia , RNA Ribossômico 16S/genética , Rúmen/microbiologia , Análise de Sequência de DNARESUMO
Twelve Aspergillus sp. strains producing glucose dehydrogenase were identified using ITS region sequencing. Based on the sequences obtained, the genomic relationship of the analyzed strains was investigated. Moreover, partial gdh gene sequences were determined and aligned. The amplified fragment length polymorphism (AFLP) method was applied for genomic fingerprinting of twelve Aspergillus isolates. Using one PstI restriction endonuclease and five selective primers in an AFLP assay, 556 DNA fragments were generated, including 532 polymorphic bands. The AFLP profiles were found to be highly specific for each strain and they unambiguously distinguished twelve Aspergilli fungi. The AFLP-based dendrogram generated by the UPGMA method grouped all the Aspergillus fungi studied into two major clusters. All the Aspergillus strains were also characterized using Biolog FF MicroPlates to obtain data on C-substrate utilization and mitochondrial activity. The ability to decompose various substrates differed among the analyzed strains up to three folds. All of the studied strains mainly decomposed carbohydrates.
Assuntos
Aspergillus/genética , Genoma Fúngico , Glucose 1-Desidrogenase/biossíntese , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Aspergillus/classificação , Aspergillus/enzimologia , Biodiversidade , Glucose 1-Desidrogenase/metabolismo , Fenótipo , FilogeniaRESUMO
This study analyzes the occurrence of bile salt hydrolase in fourteen strains belonging to the genus Bifidobacterium. Deconjugation activity was detected using a plate test, two-step enzymatic reaction and activity staining on a native polyacrylamide gel. Subsequently, bile salt hydrolases from B. pseudocatenulatum and B. longum subsp. suis were purified using a two-step chromatographic procedure. Biochemical characterization of the bile salt hydrolases showed that the purified enzymes hydrolyzed all of the six major human bile salts under the pH and temperature conditions commonly found in the human gastrointestinal tract. Next, the dynamic rheometry was applied to monitor the gelation process of deoxycholic acid under different conditions. The results showed that bile acids displayed aqueous media gelating properties. Finally, gel-forming abilities of bifidobacteria exhibiting bile salt hydrolase activity were analyzed. Our investigations have demonstrated that the release of deconjugated bile acids led to the gelation phenomenon of the enzymatic reaction solution containing purified BSH. The presented results suggest that bile salt hydrolase activity commonly found among intestinal microbiota increases hydrogel-forming abilities of certain bile salts. To our knowledge, this is the first report showing that bile salt hydrolase activity among Bifidobacterium is directly connected with the gelation process of bile salts. In our opinion, if such a phenomenon occurs in physiological conditions of human gut, it may improve bacterial ability to colonize the gastrointestinal tract and their survival in this specific ecological niche.
Assuntos
Amidoidrolases/fisiologia , Proteínas de Bactérias/fisiologia , Bifidobacterium/enzimologia , Amidoidrolases/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Biocatálise , Ácido Desoxicólico/química , Humanos , Hidrogéis/química , Concentração de Íons de Hidrogênio , Filogenia , Especificidade por SubstratoRESUMO
The identification of bacteriophage proteins on the surface of Lactobacillus rhamnosus Pen was performed by LC-MS/MS analysis. Among the identified proteins, we found a phage-derived major tail protein, two major head proteins, a portal protein, and a host specificity protein. Electron microscopy of a cell surface extract revealed the presence of phage particles in the analyzed samples. The partial sequence of genes encoding the major tail protein for all tested L. rhamnosus strains was determined with specific primers designed in this study. Next, RT-PCR analysis allowed detection of the expression of the major tail protein gene in L. rhamnosus strain Pen at all stages of bacterial growth. The transcription of genes encoding the major tail protein was also proved for other L. rhamnosus strains used in this study. The present work demonstrates the spontanous release of prophage-encoded particles by a commercial probiotic L. rhamnosus strain, which did not significantly affect the bacterial growth of the analyzed strain.