Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Prod Rep ; 40(8): 1432-1456, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37103550

RESUMO

Covering: 1995 to 2022Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites. Elimination of CSCs is a key goal in enhancing cancer treatment and may be aided by application of natural products in conjunction with conventional treatments. In this review, we highlight molecular features of CSCs and discuss synthesis, structure-activity relationships, derivatization, and effects of six natural products with anti-CSC activity.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Células-Tronco Neoplásicas
2.
Carcinogenesis ; 42(9): 1133-1142, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34218275

RESUMO

Alterations in diversity and function of the gut microbiome are associated with concomitant changes in immune response, including chronic inflammation. Chronic inflammation is a major risk factor for colorectal cancer (CRC). An important component of the inflammatory response system are the toll-like receptors (TLRs). TLRs are capable of sensing microbial components, including nucleic acids, lipopolysaccharides and peptidoglycans, as well as bacterial outer membrane vesicles (OMV). OMVs can be decorated with or carry as cargo these TLR activating factors. These microbial factors can either promote tolerance or activate signaling pathways leading to chronic inflammation. Herein we discuss the role of the microbiome and the OMVs that originate from intestinal bacteria in promoting chronic inflammation and the development of colitis-associated CRC. We also discuss the contribution of TLRs in mediating the microbiome-inflammation axis and subsequent cancer development. Understanding the role of the microbiome and its secretory factors in TLR response may lead to the development of better cancer therapeutics.


Assuntos
Neoplasias Colorretais/patologia , Microbioma Gastrointestinal , Inflamação/metabolismo , Receptores Toll-Like/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Humanos
3.
BMC Cancer ; 20(1): 141, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32085745

RESUMO

BACKGROUND: The term triple-negative breast cancer (TNBC) is used to describe breast cancers without expression of estrogen receptor, progesterone receptor or HER2 amplification. To advance targeted treatment options for TNBC, it is critical that the subtypes within this classification be described in regard to their characteristic biology and gene expression. The Cancer Genome Atlas (TCGA) dataset provides not only clinical and mRNA expression data but also expression data for microRNAs. RESULTS: In this study, we applied the Lehmann classifier to TCGA-derived TNBC cases which also contained microRNA expression data and derived subtype-specific microRNA expression patterns. Subsequent analyses integrated known and predicted microRNA-mRNA regulatory nodes as well as patient survival data to identify key networks. Notably, basal-like 1 (BL1) TNBCs were distinguished from basal-like 2 TNBCs through up-regulation of members of the miR-17-92 cluster of microRNAs and suppression of several known miR-17-92 targets including inositol polyphosphate 4-phosphatase type II, INPP4B. CONCLUSIONS: These data demonstrate TNBC subtype-specific microRNA and target mRNA expression which may be applied to future biomarker and therapeutic development studies.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Basocelular/patologia , Bases de Dados Genéticas/estatística & dados numéricos , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias de Mama Triplo Negativas/patologia , Adulto , Idoso , Carcinoma Basocelular/classificação , Carcinoma Basocelular/genética , Análise por Conglomerados , Biologia Computacional , Feminino , Heterogeneidade Genética , Humanos , Pessoa de Meia-Idade , RNA Mensageiro/genética , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/genética , Regulação para Cima , Adulto Jovem
4.
Breast Cancer Res ; 21(1): 37, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30845991

RESUMO

BACKGROUND: Triple-negative breast cancers (TNBCs), which lack receptors for estrogen, progesterone, and amplification of epidermal growth factor receptor 2, are highly aggressive. Consequently, patients diagnosed with TNBCs have reduced overall and disease-free survival rates compared to patients with other subtypes of breast cancer. TNBCs are characterized by the presence of cancer cells with mesenchymal properties, indicating that the epithelial to mesenchymal transition (EMT) plays a major role in the progression of this disease. The EMT program has also been implicated in chemoresistance, tumor recurrence, and induction of cancer stem cell (CSC) properties. Currently, there are no targeted therapies for TNBC, and hence, it is critical to identify the novel targets to treat TNBC. METHODS: A library of compounds was screened for their ability to inhibit EMT in cells with mesenchymal phenotype as assessed using the previously described Z-cad reporters. Of the several drugs tested, GSK3ß inhibitors were identified as EMT inhibitors. The effects of GSK3ß inhibitors on the properties of TNBC cells with a mesenchymal phenotype were assessed using qRT-PCR, flow cytometry, western blot, mammosphere, and migration and cell viability assays. Publicly available datasets also were analyzed to examine if the expression of GSK3ß correlates with the overall survival of breast cancer patients. RESULTS: We identified a GSK3ß inhibitor, BIO, in a drug screen as one of the most potent inhibitors of EMT. BIO and two other GSK3ß inhibitors, TWS119 and LiCl, also decreased the expression of mesenchymal markers in several different cell lines with a mesenchymal phenotype. Further, inhibition of GSK3ß reduced EMT-related migratory properties of cells with mesenchymal properties. To determine if GSK3ß inhibitors target mesenchymal-like cells by affecting the CSC population, we employed mammosphere assays and profiled the stem cell-related cell surface marker CD44+/24- in cells after exposure to GSK3ß inhibitors. We found that GSK3ß inhibitors indeed decreased the CSC properties of cell types with mesenchymal properties. We treated cells with epithelial and mesenchymal properties with GSK3ß inhibitors and found that GSK3ß inhibitors selectively kill cells with mesenchymal attributes while sparing cells with epithelial properties. We analyzed patient data to identify genes predictive of poor clinical outcome that could serve as novel therapeutic targets for TNBC. The Wnt signaling pathway is critical to EMT, but among the various factors known to be involved in Wnt signaling, only the higher expression of GSK3ß correlated with poorer overall patient survival. CONCLUSIONS: Taken together, our data demonstrate that GSK3ß is a potential target for TNBCs and suggest that GSK3ß inhibitors could serve as selective inhibitors of EMT and CSC properties for the treatment of a subset of aggressive TNBC. GSK3ß inhibitors should be tested for use in combination with standard-of-care drugs in preclinical TNBC models.


Assuntos
Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Conjuntos de Dados como Assunto , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Humanos , Concentração Inibidora 50 , Cloreto de Lítio/farmacologia , Cloreto de Lítio/uso terapêutico , Células-Tronco Neoplásicas/patologia , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Via de Sinalização Wnt
5.
Angew Chem Int Ed Engl ; 58(9): 2734-2738, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30600887

RESUMO

The hypercalins are dearomatized acylphloroglucinols with a pendant complex cyclopentane ring that exhibit activity against several cancer cell lines. We report the first total synthesis of (+)-hypercalin C employing a convergent strategy that enabled the dissection of the essential structural features required for the observed anticancer activity. A strategic disconnection involving an unusual C sp3 -C sp2 Suzuki-Miyaura coupling with an α-bromo enolether also revealed an unexpected C-H activation. This strategy targeted designed analogues along the synthetic route to address particular biological questions. These results support the hypothesis that hypercalin C may act as a proton shuttle with the dearomatized acylphloroglucinol moiety being essential for this activity.


Assuntos
Antineoplásicos/farmacologia , Ciclopentanos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/síntese química , Ciclopentanos/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
6.
J Nat Prod ; 80(10): 2644-2651, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-28945373

RESUMO

Fractionation of the ethyl acetate-soluble extract of the roots of Leplaea mayombensis afforded two new 3,4-seco-lanostane-type triterpenoids, leplaeric acids A and B (1, 2), the new lanostane-type triterpenoid leplaeric acid C (3), and six known natural products (5-10). Derivatization of the main constituent, 1, afforded the dimethyl ester 4, the monoamide 11, and diamide 12 for SAR studies. The structures of these compounds were established through spectroscopic methods, and a single-crystal X-ray diffraction analysis was used to confirm the relative configuration of compound 1. These lanostane derivatives are unique since they are the first C-21-oxygenated lanostanes isolated from plant sources. Preliminary biological assays against the MDA MB 231 breast cancer cell line showed that compounds 1, 2, 4, and 11 have modest cytotoxic activity. Compound 2 was the most active, with an IC50 of 55 ± 7 µM. From these results, the amides (11, 12) derived from triterpenoid 1 were found to be less active than the derived esters (2, 4).


Assuntos
Lanosterol , Meliaceae/química , Raízes de Plantas/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia , Camarões , Humanos , Lanosterol/análogos & derivados , Lanosterol/química , Lanosterol/isolamento & purificação , Lanosterol/farmacologia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Triterpenos/química
8.
Breast Cancer Res Treat ; 143(1): 189-201, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24305980

RESUMO

The aim of this study is to identify and validate copy number aberrations in early-stage primary breast tumors associated with bone or non-bone metastasis. Whole-genome molecular inversion probe arrays were used to evaluate copy number imbalances (CNIs) in breast tumors from 960 early-stage patients with information about site of metastasis. The CoxBoost algorithm was used to select metastasis site-related CNIs and to fit a Cox proportional hazards model. Gains at 1q41 and 1q42.12 and losses at 1p13.3, 8p22, and Xp11.3 were significantly associated with bone metastasis. Gains at 2p11.2, 3q21.3-22.2, 3q27.1, 10q23.1, and 14q13.2-3 and loss at 7q21.11 were associated with non-bone metastasis. To examine the joint effect of CNIs and clinical predictors, patients were stratified into three risk groups (low, intermediate, and high) based on the sum of predicted linear hazard ratios. For bone metastasis, the hazard (95 % confidence interval) for the low-risk group was 0.32 (0.11-0.92) compared to the intermediate-risk group and 2.99 (1.74-5.11) for the high-risk group. For non-bone metastasis, the hazard for the low-risk group was 0.34 (0.17-0.66) and 2.33 (1.59-3.43) for the high-risk group. The prognostic value of loss at 8p22 for bone metastasis and gains at 10q23.1 for non-bone metastasis, and gain at 11q13.5 for both bone and non-bone metastases were externally validated in 335 breast tumors pooled from four independent cohorts. Distinct CNIs are independently associated with bone and non-bone metastasis for early-stage breast cancer patients across cohorts. These data warrant consideration for tailoring surveillance and management of metastasis risk.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Variações do Número de Cópias de DNA , Adulto , Idoso , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Reprodutibilidade dos Testes
9.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559195

RESUMO

The goal of proteomics experiments is to identify proteins to observe changes in cellular processes and diseases. One challenge in proteomics is the removal of contaminants following protein extraction, which can limit protein identification. Single-pot, solid-phase-enhanced sample preparation (SP3) is a clean-up technique in which proteins are captured on carboxylate-modified particles through a proposed hydrophilic-interaction-liquid-chromatography (HILIC)-like mechanism. However, recent results have suggested that proteins are captured in SP3 due to a protein-aggregation mechanism. Thus, solvent precipitation, single-pot, solid-phase-enhanced sample preparation (SP4) is a newer clean-up technique that employs protein-aggregation to capture proteins without modified particles. SP4 has previously enriched low-solubility proteins, though differences in protein capture could affect which proteins are detected and identified. We hypothesize that the mechanisms of capture for SP3 and SP4 are distinct. Herein, we assess the proteins identified and enriched using SP3 versus SP4 for MCF7 subcellular fractions and correlate protein capture in each method to protein hydrophobicity. Our results indicate that SP3 captures more hydrophilic proteins through a combination of HILIC-like and protein-aggregation mechanisms, while SP4 captures more hydrophobic proteins through a protein-aggregation mechanism. From these results, we recommend clean-up techniques based on protein-sample hydrophobicity to yield high proteome coverage in biological samples.

10.
Proc Natl Acad Sci U S A ; 107(35): 15449-54, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713713

RESUMO

The epithelial-to-mesenchymal transition (EMT) produces cancer cells that are invasive, migratory, and exhibit stem cell characteristics, hallmarks of cells that have the potential to generate metastases. Inducers of the EMT include several transcription factors (TFs), such as Goosecoid, Snail, and Twist, as well as the secreted TGF-beta1. Each of these factors is capable, on its own, of inducing an EMT in the human mammary epithelial (HMLE) cell line. However, the interactions between these regulators are poorly understood. Overexpression of each of the above EMT inducers up-regulates a subset of other EMT-inducing TFs, with Twist, Zeb1, Zeb2, TGF-beta1, and FOXC2 being commonly induced. Up-regulation of Slug and FOXC2 by either Snail or Twist does not depend on TGF-beta1 signaling. Gene expression signatures (GESs) derived by overexpressing EMT-inducing TFs reveal that the Twist GES and Snail GES are the most similar, although the Goosecoid GES is the least similar to the others. An EMT core signature was derived from the changes in gene expression shared by up-regulation of Gsc, Snail, Twist, and TGF-beta1 and by down-regulation of E-cadherin, loss of which can also trigger an EMT in certain cell types. The EMT core signature associates closely with the claudin-low and metaplastic breast cancer subtypes and correlates negatively with pathological complete response. Additionally, the expression level of FOXC1, another EMT inducer, correlates strongly with poor survival of breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Claudinas/genética , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Mesoderma/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Regulação para Baixo , Feminino , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Proteína Goosecoid/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta1/genética , Proteína 1 Relacionada a Twist/genética
11.
Microscopy (Oxf) ; 72(6): 515-519, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37148329

RESUMO

Biological nanoparticles, such as bacterial outer membrane vesicles (OMVs), are routinely characterized through transmission electron microscopy (TEM). In this study, we report a novel method to prepare OMVs for TEM imaging. To preserve vesicular shape and structure, we developed a dual fixation protocol involving osmium tetroxide incubation prior to negative staining with uranyl acetate. Combining osmium tetroxide with uranyl acetate resulted in preservation of sub-50 nm vesicles and improved morphological stability, enhancing characterization of lipid-based nanoparticles by TEM.


Assuntos
Corantes , Tetróxido de Ósmio , Microscopia Eletrônica , Membrana Externa Bacteriana , Microscopia Eletrônica de Transmissão , Coloração e Rotulagem , Osmio
12.
J R Soc Interface ; 20(198): 20220627, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36628532

RESUMO

Epithelial-mesenchymal transition (EMT) and its reverse mesenchymal-epithelial transition (MET) are critical during embryonic development, wound healing and cancer metastasis. While phenotypic changes during short-term EMT induction are reversible, long-term EMT induction has been often associated with irreversibility. Here, we show that phenotypic changes seen in MCF10A cells upon long-term EMT induction by TGFß need not be irreversible, but have relatively longer time scales of reversibility than those seen in short-term induction. Next, using a phenomenological mathematical model to account for the chromatin-mediated epigenetic silencing of the miR-200 family by ZEB family, we highlight how the epigenetic memory gained during long-term EMT induction can slow the recovery to the epithelial state post-TGFß withdrawal. Our results suggest that epigenetic modifiers can govern the extent and time scale of EMT reversibility and advise caution against labelling phenotypic changes seen in long-term EMT induction as 'irreversible'.


Assuntos
Memória Epigenética , Transição Epitelial-Mesenquimal , Epigênese Genética , Fator de Crescimento Transformador beta
13.
Cancers (Basel) ; 14(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35008373

RESUMO

Epithelial-mesenchymal transition (EMT) and its reversal, mesenchymal-epithelial transition (MET) drive tissue reorganization critical for early development. In carcinomas, processing through EMT, MET, or partial states promotes migration, invasion, dormancy, and metastatic colonization. As a reversible process, EMT is inherently regulated at epigenetic and epigenomic levels. To understand the epigenomic nature of reversible EMT and its partial states, we characterized chromatin accessibility dynamics, transcriptomic output, protein expression, and cellular phenotypes during stepwise reversible EMT. We find that the chromatin insulating protein machinery, including CTCF, is suppressed and re-expressed, coincident with broad alterations in chromatin accessibility, during EMT/MET, and is lower in triple-negative breast cancer cell lines with EMT features. Through an analysis of chromatin accessibility using ATAC-seq, we identify that early phases of EMT are characterized by enrichment for AP-1 family member binding motifs, but also by a diminished enrichment for CTCF binding motifs. Through a loss-of-function analysis, we demonstrate that the suppression of CTCF alters cellular plasticity, strengthening the epithelial phenotype via the upregulation of epithelial markers E-cadherin/CDH1 and downregulation of N-cadherin/CDH2. Conversely, the upregulation of CTCF leads to the upregulation of EMT gene expression and an increase in mesenchymal traits. These findings are indicative of a role of CTCF in regulating epithelial-mesenchymal plasticity and gene expression.

14.
J Biol Chem ; 285(21): 16135-44, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20348100

RESUMO

Epigenetic control of genes that are silent in embryonic stem cells, but destined for expression during differentiation, includes distinctive hallmarks, such as simultaneous activating/repressing (bivalent) modifications of chromatin and DNA hypomethylation at enhancers of gene expression. Although alpha-fetoprotein (Afp) falls into this class of genes, as it is silent in pluripotent stem cells and activated during differentiation of endoderm, we find that Afp chromatin lacks bivalent histone modifications. However, critical regulatory sites for Afp activation, overlapping Foxa1/p53/Smad-binding elements, are located within a 300-bp region lacking DNA methylation, due to transposed elements underrepresented in CpG sequences: a short interspersed transposable element and a medium reiterated sequence 1 element. Forkhead family member Foxa1 is activated by retinoic acid treatment of embryonic stem cells, binds its DNA consensus site within the short interspersed transposable/medium reiterated sequence 1 elements, and displaces linker histone H1 from silent Afp chromatin. Small interfering RNA depletion of Foxa1 showed that Foxa1 is essential in providing chromatin access to transforming growth factor beta-activated Smad2 and Smad4 and their subsequent DNA binding. Together these transcription factors establish highly acetylated chromatin and promote expression of Afp. Foxa1 acts as a pioneer transcription factor in de novo activation of Afp, by exploiting a lack of methylation at juxtaposed transposed elements, to bind and poise chromatin for intersection with transforming growth factor beta signaling during differentiation of embryonic stem cells.


Assuntos
Diferenciação Celular/fisiologia , Elementos de DNA Transponíveis/fisiologia , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 3-alfa Nuclear de Hepatócito/metabolismo , alfa-Fetoproteínas/biossíntese , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/fisiologia , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/fisiologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Histonas/metabolismo , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/fisiologia , Elementos de Resposta/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Proteína Smad2/metabolismo , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Tretinoína/farmacologia
15.
Noncoding RNA ; 7(1)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33808546

RESUMO

We are glad to share with you our eighth Journal Club and to highlight some of the most interesting papers published recently [...].

16.
Noncoding RNA ; 7(3)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34449670

RESUMO

Triple-negative breast cancers affect thousands of women in the United States and disproportionately drive mortality from breast cancer. MicroRNAs are small, non-coding RNAs that negatively regulate gene expression post-transcriptionally by inhibiting target mRNA translation or by promoting mRNA degradation. We have identified that miRNA-203, silenced by epithelial-mesenchymal transition (EMT), is a tumor suppressor and can promote differentiation of breast cancer stem cells. In this study, we tested the ability of liposomal delivery of miR-203 to reverse aspects of breast cancer pathogenesis using breast cancer and EMT cell lines. We show that translationally relevant methods for increasing miR-203 abundance within a target tissue affects cellular properties associated with cancer progression. While stable miR-203 expression suppresses LASP1 and survivin, nanoliposomal delivery suppresses BMI1, indicating that suppression of distinct mRNA target profiles can lead to loss of cancer cell migration.

17.
Sci Rep ; 11(1): 10652, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34017048

RESUMO

The epithelial-mesenchymal transition (EMT) imparts properties of cancer stem-like cells, including resistance to frequently used chemotherapies, necessitating the identification of molecules that induce cell death specifically in stem-like cells with EMT properties. Herein, we demonstrate that breast cancer cells enriched for EMT features are more sensitive to cytotoxicity induced by ophiobolin A (OpA), a sesterterpenoid natural product. Using a model of experimentally induced EMT in human mammary epithelial (HMLE) cells, we show that EMT is both necessary and sufficient for OpA sensitivity. Moreover prolonged, sub-cytotoxic exposure to OpA is sufficient to suppress EMT-imparted CSC features including sphere formation and resistance to doxorubicin. In vivo growth of CSC-rich mammary cell tumors, is suppressed by OpA treatment. These data identify a driver of EMT-driven cytotoxicity with significant potential for use either in combination with standard chemotherapy or for tumors enriched for EMT features.


Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Fungos/química , Sesterterpenos/farmacologia , Animais , Neoplasias da Mama/genética , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos SCID , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Proteína 1 Relacionada a Twist/metabolismo
18.
Cancers (Basel) ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003334

RESUMO

Properly timed addition and removal of histone 3 lysine 27 tri-methylation (H3K27me3) is critical for enabling proper differentiation throughout all stages of development and, likewise, can guide carcinoma cells into altered differentiation states which correspond to poor prognoses and treatment evasion. In early embryonic stages, H3K27me3 is invoked to silence genes and restrict cell fate. Not surprisingly, mutation or altered functionality in the enzymes that regulate this pathway results in aberrant methylation or demethylation that can lead to malignancy. Likewise, changes in expression or activity of these enzymes impact cellular plasticity, metastasis, and treatment evasion. This review focuses on current knowledge regarding methylation and de-methylation of H3K27 in cancer initiation and cancer cell plasticity.

19.
Org Lett ; 22(21): 8307-8312, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33034457

RESUMO

Pharmacophore-directed retrosynthesis applied to ophiobolin A led to bicyclic derivatives that were synthesized and display anticancer activity. Key features of the ultimate defensive synthetic strategy include a Michael addition/facially selective protonation sequence to set the critical C6 stereocenter and a ring-closing metathesis to form the cyclooctene. Cytotoxicity assays toward a breast cancer cell line (MDA-MB-231) confirm the anticipated importance of structural complexity for selectivity (vs MCF10A cells) while C3 variations modulate stability.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Sesterterpenos/síntese química , Sesterterpenos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Sesterterpenos/química , Relação Estrutura-Atividade
20.
ACS Med Chem Lett ; 11(12): 2441-2445, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33335665

RESUMO

Staurosporine is among the most potent naturally occurring kinase inhibitors isolated to date and has served as a lead compound for numerous drug development efforts in several therapeutic areas. Herein we report that C-H borylation chemistry provides access to analogs of staurosporine that were previously inaccessible to medicinal chemists who, in the past four decades, have prepared over 1000 semisynthetic staurosporine analogs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA