Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microorganisms ; 11(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37512878

RESUMO

1. BACKGROUND: Iodine is a broad-spectrum antimicrobial disinfectant for topical application. Recent studies have shown promising results on the applicability of an iodine-containing complex, FS-1, against antibiotic-resistant pathogens. It was hypothesized that the antimicrobial activity of iodine-containing complexes may be modulated by the organic moiety of the complex, i.e., amino acids. 2. METHODS: Gene regulation and metabolic alterations were studied in two model multidrug-resistant microorganisms, Staphylococcus aureus ATCC BAA-39, and Escherichia coli ATCC BAA-196, treated with three complexes containing iodine and three different amino acids: glycine, L-alanine, and L-isoleucine. The bacterial cultures were exposed to sub-lethal concentrations of the complexes in the lagging and logarithmic growth phases. Gene regulation was studied by total RNA sequencing and differential gene expression analysis. 3. RESULTS: The central metabolism of the treated bacteria was affected. An analysis of the regulation of genes involved in stress responses suggested the disruption of cell wall integrity, DNA damage, and oxidative stress in the treated bacteria. 4. CONCLUSIONS: Previous studies showed that the application of iodine-containing complexes, such as FS-1, serves as a supplement to common antibiotics and can be a promising way to combat antibiotic-resistant pathogens. Current results shed light on possible mechanisms of this action by disrupting the cell wall barriers and imposing oxidative stress. It was also found that the effect of the complexes on metabolic pathways varied in the tested microorganisms depending on the organic moiety of the complexes and the growth phase when the complexes had been applied.

2.
Nat Commun ; 14(1): 6325, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816740

RESUMO

As global SARS-CoV-2 burden and testing frequency have decreased, wastewater surveillance has emerged as a key tool to support clinical surveillance efforts. The aims of this study were to identify and characterize SARS-CoV-2 variants in wastewater samples collected from urban centers across South Africa. Here we show that wastewater sequencing analyses are temporally concordant with clinical genomic surveillance and reveal the presence of multiple lineages not detected by clinical surveillance. We show that wastewater genomics can support SARS-CoV-2 epidemiological investigations by reliably recovering the prevalence of local circulating variants, even when clinical samples are not available. Further, we find that analysis of mutations observed in wastewater can provide a signal of upcoming lineage transitions. Our study demonstrates the utility of wastewater genomics to monitor evolution and spread of endemic viruses.


Assuntos
COVID-19 , Águas Residuárias , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Vigilância Epidemiológica Baseada em Águas Residuárias , Genômica
3.
Sci Total Environ ; 903: 165817, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506905

RESUMO

The uptake of wastewater-based epidemiology (WBE) for SARS-CoV-2 as a complementary tool for monitoring population-level epidemiological features of the COVID-19 pandemic in low-and-middle-income countries (LMICs) is low. We report on the findings from the South African SARS-CoV-2 WBE surveillance network and make recommendations regarding the implementation of WBE in LMICs. Eight laboratories quantified influent wastewater collected from 87 wastewater treatment plants in all nine South African provinces from 01 June 2021 to 31 May 2022 inclusive, during the 3rd and 4th waves of COVID-19. Correlation and regression analyses between wastewater levels of SARS-CoV-2 and district laboratory-confirmed caseloads were conducted. The sensitivity and specificity of novel 'rules' based on WBE data to predict an epidemic wave were determined. Amongst 2158 wastewater samples, 543/648 (85 %) samples taken during a wave tested positive for SARS-CoV-2 compared with 842 positive tests from 1512 (55 %) samples taken during the interwave period. Overall, the regression-co-efficient was 0,66 (95 % confidence interval = 0,6-0,72, R2 = 0.59), ranging from 0.14 to 0.87 by testing laboratory. Early warning of the 4th wave of SARS-CoV-2 in Gauteng Province in November-December 2021 was demonstrated. A 50 % increase in log copies of SARS-CoV-2 compared with a rolling mean over the previous five weeks was the most sensitive predictive rule (58 %) to predict a new wave. Our findings support investment in WBE for SARS-CoV-2 surveillance in LMICs as an early warning tool. Standardising test methodology is necessary due to varying correlation strengths across laboratories and redundancy across testing plants. A sentinel site model can be used for surveillance networks without affecting WBE finding for decision-making. Further research is needed to identify optimal test frequency and the need for normalisation to population size to identify predictive and interpretive rules to support early warning and public health action.

4.
mSystems ; 6(2)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33727401

RESUMO

Iodine is one of the oldest antimicrobial agents. Until now, there have been no reports on acquiring resistance to iodine. Recent studies showed promising results on application of iodine-containing nano-micelles, FS-1, against antibiotic-resistant pathogens as a supplement to antibiotic therapy. The mechanisms of the action, however, remain unclear. The aim of this study was to perform a holistic analysis and comparison of gene regulation in three phylogenetically distant multidrug-resistant reference strains representing pathogens associated with nosocomial infections from the ATCC culture collection: Escherichia coli BAA-196, Staphylococcus aureus BAA-39, and Acinetobacter baumannii BAA-1790. These cultures were treated by a 5-min exposure to sublethal concentrations of the iodine-containing drug FS-1 applied in the late lagging phase and the middle of the logarithmic growth phase. Complete genome sequences of these strains were obtained in the previous studies. Gene regulation was studied by total RNA extraction and Ion Torrent sequencing followed by mapping the RNA reads against the reference genome sequences and statistical processing of read counts using the DESeq2 algorithm. It was found that the treatment of bacteria with FS-1 profoundly affected the expression of many genes involved in the central metabolic pathways; however, alterations of the gene expression profiles were species specific and depended on the growth phase. Disruption of respiratory electron transfer membrane complexes, increased penetrability of bacterial cell walls, and osmotic and oxidative stresses leading to DNA damage were the major factors influencing the treated bacteria.IMPORTANCE Infections caused by antibiotic-resistant bacteria threaten public health worldwide. Combinatorial therapy in which antibiotics are administered together with supplementary drugs improving susceptibility of pathogens to the regular antibiotics is considered a promising way to overcome this problem. An induction of antibiotic resistance reversion by the iodine-containing nano-micelle drug FS-1 has been reported recently. This drug is currently under clinical trials in Kazakhstan against multidrug-resistant tuberculosis. The effects of released iodine on metabolic and regulatory processes in bacterial cells remain unexplored. The current work provides an insight into gene regulation in the antibiotic-resistant nosocomial reference strains treated with iodine-containing nanoparticles. This study sheds light on unexplored bioactivities of iodine and the mechanisms of its antibacterial effect when applied in sublethal concentrations. This knowledge will aid in the future design of new drugs against antibiotic-resistant infections.

5.
Future Microbiol ; 16: 1063-1085, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34468178

RESUMO

Aim: Promising results on application of iodine-containing nano-micelles, FS-1, against antibiotic-resistant Escherichia coli was demonstrated. Materials & methods: RNA sequencing for transcriptomics and the complete genome sequencing by SMRT PacBio were followed by genome assembly and methylomics. Results & conclusion: FS-1-treated E. coli showed an increased susceptibility to antibiotics ampicillin and gentamicin. Cultivation with FS-1 caused gene expression alterations toward anaerobic respiration, increased anabolism and inhibition of many nutrient uptake systems. Main targets of iodine-containing particles were cell membrane structures causing oxidative, osmotic and acidic stresses. Identification of methylated nucleotides showed an altered pattern in the FS-1-treated culture. Possible role of transcriptional and epigenetic modifications in the observed increase in susceptibility to gentamicin and ampicillin were discussed.


Lay abstract New approaches of combatting drug-resistant infections are in demand as the development of new antibiotics is in a deep crisis. This study was set out to investigate molecular mechanisms of action of new iodine-containing nano-micelle drug FS-1, which potentially may improve the antibiotic therapy of drug-resistant infections. Iodine is one of the oldest antimicrobials and until now there were no reports on development of resistance to iodine. Recent studies showed promising results on application of iodine-containing nano-micelles against antibiotic-resistant pathogens as a supplement to antibiotic therapy. The mechanisms of action, however, remain unclear. The collection strain Escherichia coli ATCC BAA-196 showing an extended spectrum of resistance to ßß-lactam and aminoglycoside antibiotics was used in this study as a model organism. Antibiotic resistance patterns, whole genomes and total RNA sequences of the FS-1-treated (FS) and negative control (NC) variants of E. coli BAA-196 were obtained and analyzed. FS culture showed an increased susceptibility to antibiotics associated with profound gene expression alterations switching the bacterial metabolism to anaerobic respiration, increased anabolism, osmotic stress response and inhibition of many nutrient uptake systems. Nucleotide methylation pattern were identified in FS and NC cultures. While the numbers of methylated sites in both genomes remained similar, some peculiar alterations were observed in their distribution along chromosomal and plasmid sequences.


Assuntos
Antibacterianos , Escherichia coli/efeitos dos fármacos , Iodo , Ampicilina/farmacologia , Antibacterianos/farmacologia , Metilação de DNA , Epigênese Genética , Escherichia coli/genética , Gentamicinas/farmacologia , Iodo/farmacologia , Micelas , Nanopartículas , Transcriptoma
6.
Microbiol Resour Announc ; 8(50)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831610

RESUMO

Here, we report the complete genome sequence of the multidrug-resistant Escherichia coli strain ATCC BAA-196, a model organism used for studying possible antibiotic resistance reversion induced by FS-1, an iodine-containing complex. Two genomes, representing FS-1-treated and negative-control variants and composed of a chromosome and several plasmids, were assembled.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA