Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 75(10): 2819-2828, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38366564

RESUMO

The net CO2 assimilation (A) response to intercellular CO2 concentration (Ci) is a fundamental measurement in photosynthesis and plant physiology research. The conventional A/Ci protocols rely on steady-state measurements and take 15-40 min per measurement, limiting data resolution or biological replication. Additionally, there are several CO2 protocols employed across the literature, without clear consensus as to the optimal protocol or systematic biases in their estimations. We compared the non-steady-state Dynamic Assimilation Technique (DAT) protocol and the three most used CO2 protocols in steady-state measurements, and tested whether different CO2 protocols lead to systematic differences in estimations of the biochemical limitations to photosynthesis. The DAT protocol reduced the measurement time by almost half without compromising estimation accuracy or precision. The monotonic protocol was the fastest steady-state method. Estimations of biochemical limitations to photosynthesis were very consistent across all CO2 protocols, with slight differences in Rubisco carboxylation limitation. The A/Ci curves were not affected by the direction of the change of CO2 concentration but rather the time spent under triose phosphate utilization (TPU)-limited conditions. Our results suggest that the maximum rate of Rubisco carboxylation (Vcmax), linear electron flow for NADPH supply (J), and TPU measured using different protocols within the literature are comparable, or at least not systematically different based on the measurement protocol used.


Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
2.
Methods Mol Biol ; 2792: 115-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861082

RESUMO

Leaf-level gas exchange enables accurate measurements of net CO2 assimilation in the light, as well as CO2 respiration in the dark. Net positive CO2 assimilation in the light indicates that the gain of carbon by photosynthesis offsets the photorespiratory loss of CO2 and respiration of CO2 in the light (RL), while the CO2 respired in the dark is mainly attributed to respiration in the dark (RD). Measuring the CO2 release specifically from photorespiration in the light is challenging since net CO2 assimilation involves three concurrent processes (the velocity of rubisco carboxylation; vc, velocity of rubisco oxygenation; vo, and RL). However, by employing a rapid light-dark transient, it is possible to transiently measure some of the CO2 release from photorespiration without the background of vc-based assimilation in the dark. This method is commonly known as the post-illumination CO2 burst (PIB) and results in a "burst" of CO2 immediately after the transition to the dark. This burst can be quantitatively characterized using several approaches. Here, we describe how to set up a PIB measurement and provide some guidelines on how to analyze and interpret the data obtained using a PIB analysis application developed in R.


Assuntos
Dióxido de Carbono , Luz , Fotossíntese , Dióxido de Carbono/metabolismo , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Respiração Celular
3.
Methods Mol Biol ; 2792: 3-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38861074

RESUMO

Determining enzyme activities involved in photorespiration, either in a crude plant tissue extract or in a preparation of a recombinant enzyme, is time-consuming, especially when large number of samples need to be processed. This chapter presents a phosphoglycolate phosphatase (PGLP) activity assay that is adapted for use in a 96-well microplate format. The microplate format for the assay requires fewer enzymes and reagents and allows rapid and less expensive measurement of PGLP enzyme activity. The small volume of reaction mix in a 96-well microplate format enables the determination of PGLP enzyme activity for screening many plant samples, multiple enzyme activities using the same protein extract, and/or identifying kinetic parameters for a recombinant enzyme. To assist in preparing assay reagents, we also present an R Shiny buffer preparation app for PGLP and other photorespiratory enzyme activities and a Km and Vmax calculation app.


Assuntos
Ensaios Enzimáticos , Monoéster Fosfórico Hidrolases , Extratos Vegetais , Folhas de Planta , Proteínas Recombinantes , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Cinética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Ensaios Enzimáticos/métodos , Extratos Vegetais/química , Ensaios de Triagem em Larga Escala/métodos
5.
Front Plant Sci ; 13: 1023571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684783

RESUMO

Leaf photosynthesis of perennial grasses usually decreases markedly from early to late summer, even when the canopy remains green and environmental conditions are favorable for photosynthesis. Understanding the physiological basis of this photosynthetic decline reveals the potential for yield improvement. We tested the association of seasonal photosynthetic decline in switchgrass (Panicum virgatum L.) with water availability by comparing plants experiencing ambient rainfall with plants in a rainfall exclusion experiment in Michigan, USA. For switchgrass exposed to ambient rainfall, daily net CO2 assimilation ( A n e t ' ) declined from 0.9 mol CO2 m-2 day-1 in early summer to 0.43 mol CO2 m-2 day-1 in late summer (53% reduction; P<0.0001). Under rainfall exclusion shelters, soil water content was 73% lower and A n e t ' was 12% and 26% lower in July and September, respectively, compared to those of the rainfed plants. Despite these differences, the seasonal photosynthetic decline was similar in the season-long rainfall exclusion compared to the rainfed plants; A n e t ' in switchgrass under the shelters declined from 0.85 mol CO2 m-2 day-1 in early summer to 0.39 mol CO2 m-2 day-1 (54% reduction; P<0.0001) in late summer. These results suggest that while water deficit limited A n e t ' late in the season, abundant late-season rainfalls were not enough to restore A n e t ' in the rainfed plants to early-summer values suggesting water deficit was not the sole driver of the decline. Alongside change in photosynthesis, starch in the rhizomes increased 4-fold (P<0.0001) and stabilized when leaf photosynthesis reached constant low values. Additionally, water limitation under shelters had no negative effects on the timing of rhizome starch accumulation, and rhizome starch content increased ~ 6-fold. These results showed that rhizomes also affect leaf photosynthesis during the growing season. Towards the end of the growing season, when vegetative growth is completed and rhizome reserves are filled, diminishing rhizome sink activity likely explained the observed photosynthetic declines in plants under both ambient and reduced water availability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA