Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 208: 108507, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38467083

RESUMO

The excess of salts in soils causes stress in most plants, except for some halophytes that can tolerate higher levels of salinity. The excess of Na+ generates an ionic imbalance, reducing the K+ content and altering cellular metabolism, thus impacting in plant growth and development. Additionally, salinity in soil induces water stress due to osmotic effects and increments the production of reactive oxygen species (ROS) that affect the cellular structure, damaging membranes and proteins, and altering the electrochemical potential of H+, which directly affects nutrient absorption by membrane transporters. However, plants possess mechanisms to overcome the toxicity of the sodium ions, such as internalization into the vacuole or exclusion from the cell, synthesis of enzymes or protective compounds against ROS, and the synthesis of metabolites that help to regulate the osmotic potential of plants. Physiologic and molecular mechanisms of salinity tolerance in plants will be addressed in this review. Furthermore, a revision of strategies taken by researchers to confer salt stress tolerance on agriculturally important species are discussed. These strategies include conventional breeding and genetic engineering as transgenesis and genome editing by CRISPR/Cas9.


Assuntos
Melhoramento Vegetal , Salinidade , Espécies Reativas de Oxigênio , Plantas Tolerantes a Sal/genética , Desenvolvimento Vegetal , Estresse Fisiológico
2.
Biol. Res ; 43(1): 99-111, 2010. ilus
Artigo em Inglês | LILACS | ID: lil-548034

RESUMO

The basic body plan of a plant is established early in embryogenesis when cells differentiate, giving rise to the apical and basal regions of the embryo. Using chlorophyll fluorescence as a marker for chloroplasts, we have detected specific patterns of chloroplast-containing cells at specific stages of embryogenesis. Non-randomly distributed chloroplast-containing cells are seen as early as the globular stage of embryogenesis in Arabidopsis. In the heart stage of embryogenesis, chloroplast containing cells are detected in epidermal cells as well as a central region of the heart stage embryo, forming a triangular septum of chloroplast-containing cells that divides the embryo into three equal sectors. Torpedo stage embryos have chloroplast-containing epidermal cells and a central band of chloroplast-containing cells in the cortex layer, just below the shoot apical meristem. In the walking-stick stage of embryogenesis, chloroplasts are present in the epidermal, cortex and endodermal cells. The chloroplasts appear reduced or absent from the provascular and columella cells of walking-stick stage embryos. These results suggest that there is a tight regulation of plastid differentiation during embryogenesis that generates specific patterns of chloroplast-containing cells in specific cell layers at specific stages of embryogenesis.


Assuntos
Arabidopsis/embriologia , Clorofila/metabolismo , Cloroplastos/ultraestrutura , Arabidopsis/ultraestrutura , Fluorescência , Microscopia Confocal , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA