Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 615(7954): 830-835, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922588

RESUMO

Perovskite light-emitting diodes (LEDs) have attracted broad attention due to their rapidly increasing external quantum efficiencies (EQEs)1-15. However, most high EQEs of perovskite LEDs are reported at low current densities (<1 mA cm-2) and low brightness. Decrease in efficiency and rapid degradation at high brightness inhibit their practical applications. Here, we demonstrate perovskite LEDs with exceptional performance at high brightness, achieved by the introduction of a multifunctional molecule that simultaneously removes non-radiative regions in the perovskite films and suppresses luminescence quenching of perovskites at the interface with charge-transport layers. The resulting LEDs emit near-infrared light at 800 nm, show a peak EQE of 23.8% at 33 mA cm-2 and retain EQEs more than 10% at high current densities of up to 1,000 mA cm-2. In pulsed operation, they retain EQE of 16% at an ultrahigh current density of 4,000 mA cm-2, along with a high radiance of more than 3,200 W s-1 m-2. Notably, an operational half-lifetime of 32 h at an initial radiance of 107 W s-1 m-2 has been achieved, representing the best stability for perovskite LEDs having EQEs exceeding 20% at high brightness levels. The demonstration of efficient and stable perovskite LEDs at high brightness is an important step towards commercialization and opens up new opportunities beyond conventional LED technologies, such as perovskite electrically pumped lasers.

2.
Nature ; 580(7803): 360-366, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296189

RESUMO

Halide perovskite materials have promising performance characteristics for low-cost optoelectronic applications. Photovoltaic devices fabricated from perovskite absorbers have reached power conversion efficiencies above 25 per cent in single-junction devices and 28 per cent in tandem devices1,2. This strong performance (albeit below the practical limits of about 30 per cent and 35 per cent, respectively3) is surprising in thin films processed from solution at low-temperature, a method that generally produces abundant crystalline defects4. Although point defects often induce only shallow electronic states in the perovskite bandgap that do not affect performance5, perovskite devices still have many states deep within the bandgap that trap charge carriers and cause them to recombine non-radiatively. These deep trap states thus induce local variations in photoluminescence and limit the device performance6. The origin and distribution of these trap states are unknown, but they have been associated with light-induced halide segregation in mixed-halide perovskite compositions7 and with local strain8, both of which make devices less stable9. Here we use photoemission electron microscopy to image the trap distribution in state-of-the-art halide perovskite films. Instead of a relatively uniform distribution within regions of poor photoluminescence efficiency, we observe discrete, nanoscale trap clusters. By correlating microscopy measurements with scanning electron analytical techniques, we find that these trap clusters appear at the interfaces between crystallographically and compositionally distinct entities. Finally, by generating time-resolved photoemission sequences of the photo-excited carrier trapping process10,11, we reveal a hole-trapping character with the kinetics limited by diffusion of holes to the local trap clusters. Our approach shows that managing structure and composition on the nanoscale will be essential for optimal performance of halide perovskite devices.

3.
Nano Lett ; 17(4): 2554-2560, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28226210

RESUMO

Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI3) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (Voc) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local Voc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the Voc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

4.
Microsc Res Tech ; 85(6): 2351-2355, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35118749

RESUMO

Cross-sectional transmission electron microscopy has been widely used to investigate organic-inorganic hybrid halide perovskite-based optoelectronic devices. Electron-transparent specimens (lamellae) used in such studies are often prepared using focused ion beam (FIB) milling. However, the gallium ions used in FIB milling may severely degrade the structure and composition of halide perovskites in the lamellae, potentially invalidating studies performed on them. In this work, the close relationship between perovskite structure and luminescence is exploited to examine the structural quality of perovskite solar cell lamellae prepared by FIB milling. Through hyperspectral cathodoluminescence (CL) mapping, the perovskite layer was found to remain optically active with a slightly blue-shifted luminescence. This finding indicates that the perovskite structure is largely preserved upon the lamella fabrication process although some surface amorphisation occurred. Further changes in CL due to electron beam irradiation were also recorded, confirming that electron dose management is essential in electron microscopy studies of carefully prepared halide perovskite-based device lamellae. RESEARCH HIGHLIGHTS: Cathodoluminescence is used to study the emission of focused ion beam milled perovskite solar cell lamellae. The perovskite remained optically active with a slightly blue-shifted luminescence, indicating that the perovskite structure is mostly preserved.

5.
ACS Energy Lett ; 6(6): 2293-2304, 2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34307879

RESUMO

Halide perovskite/crystalline silicon (c-Si) tandem solar cells promise power conversion efficiencies beyond the limits of single-junction cells. However, the local light-matter interactions of the perovskite material embedded in this pyramidal multijunction configuration, and the effect on device performance, are not well understood. Here, we characterize the microscale optoelectronic properties of the perovskite semiconductor deposited on different c-Si texturing schemes. We find a strong spatial and spectral dependence of the photoluminescence (PL) on the geometrical surface constructs, which dominates the underlying grain-to-grain PL variation found in halide perovskite films. The PL response is dependent upon the texturing design, with larger pyramids inducing distinct PL spectra for valleys and pyramids, an effect which is mitigated with small pyramids. Further, optimized quasi-Fermi level splittings and PL quantum efficiencies occur when the c-Si large pyramids have had a secondary smoothing etch. Our results suggest that a holistic optimization of the texturing is required to maximize light in- and out-coupling of both absorber layers and there is a fine balance between the optimal geometrical configuration and optoelectronic performance that will guide future device designs.

6.
Science ; 374(6575): 1598-1605, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941391

RESUMO

Efforts to stabilize photoactive formamidinium (FA)­based halide perovskites for perovskite photovoltaics have focused on the growth of cubic formamidinium lead iodide (α-FAPbI3) phases by empirically alloying with cesium, methylammonium (MA) cations, or both. We show that such stabilized FA-rich perovskites are noncubic and exhibit ~2° octahedral tilting at room temperature. This tilting, resolvable only with the use of local nanostructure characterization techniques, imparts phase stability by frustrating transitions from photoactive to hexagonal phases. Although the bulk phase appears stable when examined macroscopically, heterogeneous cation distributions allow microscopically unstable regions to form; we found that these transitioned to hexagonal polytypes, leading to local trap-assisted performance losses and photoinstabilities. Using surface-bound ethylenediaminetetraacetic acid, we engineered an octahedral tilt into pure α-FAPbI3 thin films without any cation alloying. The templated photoactive FAPbI3 film was extremely stable against thermal, environmental, and light stressors.

7.
Joule ; 4(5): 1054-1069, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32467877

RESUMO

Monolithic [Cs0.05(MA0. 17FA0. 83)0.95]Pb(I0.83Br0.17)3/Cu(In,Ga)Se2 (perovskite/CIGS) tandem solar cells promise high performance and can be processed on flexible substrates, enabling cost-efficient and ultra-lightweight space photovoltaics with power-to-weight and power-to-cost ratios surpassing those of state-of-the-art III-V semiconductor-based multijunctions. However, to become a viable space technology, the full tandem stack must withstand the harsh radiation environments in space. Here, we design tailored operando and ex situ measurements to show that perovskite/CIGS cells retain over 85% of their initial efficiency even after 68 MeV proton irradiation at a dose of 2 × 1012 p+/cm2. We use photoluminescence microscopy to show that the local quasi-Fermi-level splitting of the perovskite top cell is unaffected. We identify that the efficiency losses arise primarily from increased recombination in the CIGS bottom cell and the nickel-oxide-based recombination contact. These results are corroborated by measurements of monolithic perovskite/silicon-heterojunction cells, which severely degrade to 1% of their initial efficiency due to radiation-induced recombination centers in silicon.

8.
ACS Nano ; 13(2): 1538-1546, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30586503

RESUMO

Perovskite solar cells that incorporate small concentrations of Cs in their A-site have shown increased lifetime and improved device performance. Yet, the development of fully stable devices operating near the theoretical limit requires understanding how Cs influences perovskites' electrical properties at the nanoscale. Here, we determine how the chemical composition of three perovskites (MAPbBr3, MAPbI3, and Cs-mixed) affects their short- and long-term voltage stabilities, with <50 nm spatial resolution. We map an anomalous irreversible electrical signature on MAPbBr3 at the mesoscale, resulting in local V oc variations of ∼400 mV, and in entire grains with negative contribution to the V oc. These measurements prove the necessity of high spatial resolution mapping to elucidate the fundamental limitations of this emerging material. Conversely, we capture the fully reversible voltage response of Cs-mixed perovskites, composed by Cs0.06(MA0.17FA0.83)0.94Pb(I0.83Br0.17)3, demonstrating that the desired electrical output persists even at the nanoscale. The Cs-mixed material presents no spatial variation in V oc, as ion motion is restricted. Our results show that the nanoscale electrical behavior of the perovskites is intimately connected to their chemical composition and macroscopic response.

9.
Adv Mater ; 31(42): e1902374, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31489713

RESUMO

Mixed-halide lead perovskites have attracted significant attention in the field of photovoltaics and other optoelectronic applications due to their promising bandgap tunability and device performance. Here, the changes in photoluminescence and photoconductance of solution-processed triple-cation mixed-halide (Cs0.06 MA0.15 FA0.79 )Pb(Br0.4 I0.6 )3 perovskite films (MA: methylammonium, FA: formamidinium) are studied under solar-equivalent illumination. It is found that the illumination leads to localized surface sites of iodide-rich perovskite intermixed with passivating PbI2 material. Time- and spectrally resolved photoluminescence measurements reveal that photoexcited charges efficiently transfer to the passivated iodide-rich perovskite surface layer, leading to high local carrier densities on these sites. The carriers on this surface layer therefore recombine with a high radiative efficiency, with the photoluminescence quantum efficiency of the film under solar excitation densities increasing from 3% to over 45%. At higher excitation densities, nonradiative Auger recombination starts to dominate due to the extremely high concentration of charges on the surface layer. This work reveals new insight into phase segregation of mixed-halide mixed-cation perovskites, as well as routes to highly luminescent films by controlling charge density and transfer in novel device structures.

10.
J Phys Chem Lett ; 9(12): 3463-3469, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29882399

RESUMO

Hybrid organic-inorganic perovskites containing Cs are a promising new material for light-absorbing and light-emitting optoelectronics. However, the impact of environmental conditions on their optical properties is not fully understood. Here, we elucidate and quantify the influence of distinct humidity levels on the charge carrier recombination in Cs xFA1- xPb(I yBr1- y)3 perovskites. Using in situ environmental photoluminescence (PL), we temporally and spectrally resolve light emission within a loop of critical relative humidity (rH) levels. Our measurements show that exposure up to 35% rH increases the PL emission for all Cs (10-17%) and Br (17-38%) concentrations investigated here. Spectrally, samples with larger Br concentrations exhibit PL redshift at higher humidity levels, revealing water-driven halide segregation. The compositions considered present hysteresis in their PL intensity upon returning to a low-moisture environment due to partially reversible hydration of the perovskites. Our findings demonstrate that the Cs/Br ratio strongly influences both the spectral stability and extent of light emission hysteresis. We expect our method to become standard when testing the stability of emerging perovskites, including lead-free options, and to be combined with other parameters known for affecting material degradation, e.g., oxygen and temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA