Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 293(49): 18864-18878, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30291141

RESUMO

The inflammasome is a critical molecular complex that activates interleukin-1 driven inflammation in response to pathogen- and danger-associated signals. Germline mutations in the inflammasome sensor NLRP1 cause Mendelian systemic autoimmunity and skin cancer susceptibility, but its endogenous regulation remains less understood. Here we use a proteomics screen to uncover dipeptidyl dipeptidase DPP9 as a novel interacting partner with human NLRP1 and a related inflammasome regulator, CARD8. DPP9 functions as an endogenous inhibitor of NLRP1 inflammasome in diverse primary cell types from human and mice. DPP8/9 inhibition via small molecule drugs and CRISPR/Cas9-mediated genetic deletion specifically activate the human NLRP1 inflammasome, leading to ASC speck formation, pyroptotic cell death, and secretion of cleaved interleukin-1ß. Mechanistically, DPP9 interacts with a unique autoproteolytic domain (Function to Find Domain (FIIND)) found in NLRP1 and CARD8. This scaffolding function of DPP9 and its catalytic activity act synergistically to maintain NLRP1 in its inactive state and repress downstream inflammasome activation. We further identified a single patient-derived germline missense mutation in the NLRP1 FIIND domain that abrogates DPP9 binding, leading to inflammasome hyperactivation seen in the Mendelian autoinflammatory disease Autoinflammation with Arthritis and Dyskeratosis. These results unite recent findings on the regulation of murine Nlrp1b by Dpp8/9 and uncover a new regulatory mechanism for the NLRP1 inflammasome in primary human cells. Our results further suggest that DPP9 could be a multifunctional inflammasome regulator involved in human autoinflammatory diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Inflamassomos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Ácidos Borônicos/farmacologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Dipeptídeos/farmacologia , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Mutação em Linhagem Germinativa , Células HEK293 , Humanos , Inflamação/genética , Mutação de Sentido Incorreto , Proteínas NLR , Proteínas de Neoplasias/metabolismo , Ligação Proteica , Domínios Proteicos
2.
Health Commun ; 33(5): 643-652, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28353364

RESUMO

Economic migration is integral to processes of globalization, with large numbers of the global poor moving across borders in search of employment in the face of structural adjustment programs and large-scale displacement of the poor from traditional forms of livelihood. One such group are foreign domestic workers (FDWs). In this culture-centered study, we listen to the voices of FDWs in Singapore to understand the key meanings of health held by this group of migrant workers as they negotiate living and working in Singapore. Through the representation of FDW voices at sites where they have previously been excluded, we hope to co-create participatory spaces in national discourse so that policies and interventions can be developed to address the health needs of FDWs. The results represented in this essay are part of a larger project engaging the CCA to foster communicative platforms for structural transformation.


Assuntos
Características Culturais , Emprego , Nível de Saúde , Migrantes/psicologia , Cuidado da Criança , Pré-Escolar , Feminino , Abastecimento de Alimentos , Zeladoria , Humanos , Internacionalidade , Entrevistas como Assunto , Singapura
3.
Phys Chem Chem Phys ; 19(28): 18709-18720, 2017 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-28696470

RESUMO

Electronic polarisation contributes to the electronic landscape as seen by separating charges in organic materials. The nature of electronic polarisation depends on the polarisability, density, and arrangement of polarisable molecules. In this paper, we introduce a microscopic, coarse-grained model in which we treat each molecule as a polarisable site, and use an array of such polarisable dipoles to calculate the electric field and associated energy of any arrangement of charges in the medium. The model incorporates chemical structure via the molecular polarisability and molecular packing patterns via the structure of the array. We use this model to calculate energies of charge pairs undergoing separation in finite fullerene lattices of different chemical and crystal structures. The effective dielectric constants that we estimate from this approach are in good quantitative agreement with those measured experimentally in C60 and phenyl-C61-butyric acid methyl ester (PCBM) films, but we find significant differences in dielectric constant depending on packing and on direction of separation, which we rationalise in terms of density of polarisable fullerene cages in regions of high field. In general, we find lattices containing molecules of more isotropic polarisability tensors exhibit higher dielectric constants. By exploring several model systems we conclude that differences in molecular polarisability (and therefore, chemical structure) appear to be less important than differences in molecular packing and separation direction in determining the energetic landscape for charge separation. We note that the results are relevant for finite lattices, but not necessarily for infinite systems. We propose that the model could be used to design molecular systems for effective electronic screening.

4.
J Women Aging ; 26(3): 257-79, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24919105

RESUMO

Information behavior includes activities of active information seeking, passive acquisition of information, and information use. Guided by the Elaboration Likelihood Model, this study explored elderly Singaporean women's health information behavior to understand how they sought, evaluated, and used health information in everyday lives. Twenty-two in-depth interviews were conducted with elderly Chinese women aged 61 to 79. Qualitative analysis of the interview data yielded three meta-themes: information-seeking patterns, trustworthiness of health information, and peripheral route of decision making. Results revealed that elderly women took both systematic and heuristic approaches to processing information but relied on interpersonal networks to negotiate health choices.


Assuntos
Envelhecimento/psicologia , Povo Asiático/psicologia , Informação de Saúde ao Consumidor , Tomada de Decisões , Letramento em Saúde , Comportamento de Busca de Informação , Atividades Cotidianas/psicologia , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Motivação , Singapura
5.
Sci Signal ; 17(820): eabg8145, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261657

RESUMO

Inflammasomes are multiprotein complexes that drive inflammation and contribute to protective immunity against pathogens and immune pathology in autoinflammatory diseases. Inflammasomes assemble when an inflammasome scaffold protein senses an activating signal and forms a signaling platform with the inflammasome adaptor protein ASC. The NLRP subfamily of NOD-like receptors (NLRs) includes inflammasome nucleators (such as NLRP3) and also NLRP12, which is genetically linked to familial autoinflammatory disorders that resemble diseases caused by gain-of-function NLRP3 mutants that generate a hyperactive NLRP3 inflammasome. We performed a screen to identify ASC inflammasome-nucleating proteins among NLRs that have the canonical pyrin-NACHT-LRR domain structure. Only NLRP3 and NLRP6 could initiate ASC polymerization to form "specks," and NLRP12 failed to nucleate ASC polymerization. However, wild-type NLRP12 inhibited ASC inflammasome assembly induced by wild-type and gain-of-function mutant NLRP3, an effect not seen with disease-associated NLRP12 mutants. The capacity of NLRP12 to suppress NLRP3 inflammasome assembly was limited to human NLRP3 and was not observed for wild-type murine NLRP3. Furthermore, peripheral blood mononuclear cells from patients with an NLRP12 mutant-associated inflammatory disorder produced increased amounts of the inflammatory cytokine IL-1ß in response to NLRP3 stimulation. Thus, our findings provide insights into NLRP12 biology and suggest that NLRP3 inhibitors in clinical trials for NLRP3-driven diseases may also be effective in treating NLRP12-associated autoinflammatory diseases.


Assuntos
Doenças Hereditárias Autoinflamatórias , Inflamassomos , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal , Peptídeos e Proteínas de Sinalização Intracelular , Leucócitos Mononucleares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Síndrome
6.
Emerg Microbes Infect ; 10(1): 2326-2339, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34821529

RESUMO

ABSTRACTMelioidosis is a serious infectious disease endemic in Southeast Asia, Northern Australia and has been increasingly reported in other tropical and subtropical regions in the world. Percutaneous inoculation through cuts and wounds on the skin is one of the major modes of natural transmission. Despite cuts in skin being a major route of entry, very little is known about how the causative bacterium Burkholderia pseudomallei initiates an infection at the skin and the disease manifestation at the skin known as cutaneous melioidosis. One key issue is the lack of suitable and relevant infection models. Employing an in vitro 2D keratinocyte cell culture, a 3D skin equivalent fibroblast-keratinocyte co-culture and ex vivo organ culture from human skin, we developed infection models utilizing surrogate model organism Burkholderia thailandensis to investigate Burkholderia-skin interactions. Collectively, these models show that the bacterial infection was largely limited at the wound's edge. Infection impedes wound closure, triggers inflammasome activation and cellular extrusion in the keratinocytes as a potential way to control bacterial infectious load at the skin. However, extensive infection over time could result in the epidermal layer being sloughed off, potentially contributing to formation of skin lesions.


Assuntos
Burkholderia pseudomallei/fisiologia , Burkholderia/fisiologia , Epiderme/microbiologia , Inflamassomos/metabolismo , Queratinócitos/microbiologia , Melioidose/microbiologia , Pele/microbiologia , Ferimentos e Lesões/microbiologia , Células Cultivadas , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Melioidose/metabolismo , Melioidose/patologia , Modelos Biológicos , Pele/metabolismo , Pele/patologia , Ferimentos e Lesões/metabolismo , Ferimentos e Lesões/patologia
7.
Nat Commun ; 12(1): 188, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420028

RESUMO

Nod-like receptor (NLR) proteins activate pyroptotic cell death and IL-1 driven inflammation by assembling and activating the inflammasome complex. Closely related sensor proteins NLRP1 and CARD8 undergo unique auto-proteolysis-dependent activation and are implicated in auto-inflammatory diseases; however, their mechanisms of activation are not understood. Here we report the structural basis of how the activating domains (FIINDUPA-CARD) of NLRP1 and CARD8 self-oligomerize to assemble distinct inflammasome complexes. Recombinant FIINDUPA-CARD of NLRP1 forms a two-layered filament, with an inner core of oligomerized CARD surrounded by an outer ring of FIINDUPA. Biochemically, self-assembled NLRP1-CARD filaments are sufficient to drive ASC speck formation in cultured human cells-a process that is greatly enhanced by NLRP1-FIINDUPA which forms oligomers in vitro. The cryo-EM structures of NLRP1-CARD and CARD8-CARD filaments, solved here at 3.7 Å, uncover unique structural features that enable NLRP1 and CARD8 to discriminate between ASC and pro-caspase-1. In summary, our findings provide structural insight into the mechanisms of activation for human NLRP1 and CARD8 and reveal how highly specific signaling can be achieved by heterotypic CARD interactions within the inflammasome complexes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Inflamassomos/química , Inflamassomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Caspase 1/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Inflamassomos/genética , Inflamação , Simulação de Acoplamento Molecular , Mutação , Proteínas NLR , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Transdução de Sinais
8.
Science ; 370(6521)2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33093214

RESUMO

Immune sensor proteins are critical to the function of the human innate immune system. The full repertoire of cognate triggers for human immune sensors is not fully understood. Here, we report that human NACHT, LRR, and PYD domains-containing protein 1 (NLRP1) is activated by 3C proteases (3Cpros) of enteroviruses, such as human rhinovirus (HRV). 3Cpros directly cleave human NLRP1 at a single site between Glu130 and Gly131 This cleavage triggers N-glycine-mediated degradation of the autoinhibitory NLRP1 N-terminal fragment via the cullinZER1/ZYG11B complex, which liberates the activating C-terminal fragment. Infection of primary human airway epithelial cells by live human HRV triggers NLRP1-dependent inflammasome activation and interleukin-18 secretion. Our findings establish 3Cpros as a pathogen-derived trigger for the human NLRP1 inflammasome and suggest that NLRP1 may contribute to inflammatory diseases of the airway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Cisteína Endopeptidases/metabolismo , Imunidade Inata , Inflamassomos/metabolismo , Mucosa Respiratória/virologia , Rhinovirus/enzimologia , Proteínas Virais/metabolismo , Proteases Virais 3C , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Reguladoras de Apoptose/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Culina/metabolismo , Glutamina/química , Glutamina/metabolismo , Glicina/química , Glicina/metabolismo , Células HEK293 , Células HeLa , Humanos , Interleucina-18/metabolismo , Proteínas NLR , Proteólise
9.
Nat Commun ; 9(1): 4993, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478312

RESUMO

Signals arising from bacterial infections are detected by pathogen recognition receptors (PRRs) and are transduced by specialized adapter proteins in mammalian cells. The Receptor-interacting-serine/threonine-protein kinase 2 (RIPK2 or RIP2) is such an adapter protein that is critical for signal propagation of the Nucleotide-binding-oligomerization-domain-containing proteins 1/2 (NOD1 and NOD2). Dysregulation of this signaling pathway leads to defects in bacterial detection and in some cases autoimmune diseases. Here, we show that the Caspase-activation-and-recruitment-domain (CARD) of RIP2 (RIP2-CARD) forms oligomeric structures upon stimulation by either NOD1-CARD or NOD2-2CARD. We reconstitute this complex, termed the RIPosome in vitro and solve the cryo-EM filament structure of the active RIP2-CARD complex at 4.1 Å resolution. The structure suggests potential mechanisms by which CARD domains from NOD1 and NOD2 initiate the oligomerization process of RIP2-CARD. Together with structure guided mutagenesis experiments at the CARD-CARD interfaces, we demonstrate molecular mechanisms how RIP2 is activated and self-propagating such signal.


Assuntos
Proteína Serina-Treonina Quinase 2 de Interação com Receptor/química , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Microscopia Crioeletrônica , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/ultraestrutura , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
10.
Sci Rep ; 7(1): 6303, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740178

RESUMO

In adult skin wounds, collagen expression rapidly re-establishes the skin barrier, although the resultant scar is aesthetically and functionally inferior to unwounded tissue. Although TGFß signaling and fibroblasts are known to be responsible for scar-associated collagen production, there are currently no prophylactic treatments for scar management. Fibroblasts in crosstalk with wound keratinocytes orchestrate collagen expression, although the precise paracrine pathways involved remain poorly understood. Herein, we showed that the matricellular protein, angiopoietin-like 4 (ANGPTL4), accelerated wound closure and reduced collagen expression in diabetic and ANGPTL4-knockout mice. Similar observations were made in wild-type rat wounds. Using human fibroblasts as a preclinical model for mechanistic studies, we systematically elucidated that ANGPTL4 binds to cadherin-11, releasing membrane-bound ß-catenin which translocate to the nucleus and transcriptionally upregulate the expression of Inhibitor of DNA-binding/differentiation protein 3 (ID3). ID3 interacts with scleraxis, a basic helix-loop-helix transcription factor, to inhibit scar-associated collagen types 1α2 and 3α1 production by fibroblasts. We also showed ANGPTL4 interaction with cadherin-11 in human scar tissue. Our findings highlight a central role for matricellular proteins such as ANGPTL4 in the attenuation of collagen expression and may have a broader implication for other fibrotic pathologies.


Assuntos
Proteína 4 Semelhante a Angiopoietina/genética , Cicatriz/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Fibroblastos/citologia , Proteínas Inibidoras de Diferenciação/genética , Proteínas de Neoplasias/genética , Fenômenos Fisiológicos da Pele , beta Catenina/metabolismo , Proteína 4 Semelhante a Angiopoietina/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Caderinas/metabolismo , Proliferação de Células , Células Cultivadas , Cicatriz/genética , Cicatriz/metabolismo , Colágeno/metabolismo , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Humanos , Camundongos , Ratos , Pele/citologia , Regulação para Cima , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA