Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(20): 208401, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37267556

RESUMO

The experimental measurement of correlation functions and critical exponents in disordered systems is key to testing renormalization group (RG) predictions. We mechanically unzip single DNA hairpins with optical tweezers, an experimental realization of the diffusive motion of a particle in a one-dimensional random force field, known as the Sinai model. We measure the unzipping forces F_{w} as a function of the trap position w in equilibrium and calculate the force-force correlator Δ_{m}(w), its amplitude, and correlation length, finding agreement with theoretical predictions. We study the universal scaling properties since the effective trap stiffness m^{2} decreases upon unzipping. Fluctuations of the position of the base pair at the unzipping junction u scales as u∼m^{-ζ}, with a roughness exponent ζ=1.34±0.06, in agreement with the analytical prediction ζ=4/3. Our study provides a single-molecule test of the functional RG approach for disordered elastic systems in equilibrium.


Assuntos
DNA , Pinças Ópticas , Conformação de Ácido Nucleico , DNA/genética , Pareamento de Bases , Fenômenos Mecânicos
2.
Phys Rev Lett ; 129(10): 107205, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36112461

RESUMO

We present a proof of principle for the validity of the functional renormalization group, by measuring the force correlations in Barkhausen-noise experiments. Our samples are soft ferromagnets in two distinct universality classes, differing in the range of spin interactions, and the effects of eddy currents. We show that the force correlations have a universal form predicted by the functional renormalization group, distinct for short-range and long-range elasticity, and mostly independent of eddy currents. In all cases correlations grow linearly at small distances, as in mean-field models, but in contrast to the latter are bounded at large distances. As a consequence, avalanches are anti-correlated. We derive bounds for these anticorrelations, which are saturated in the experiments, showing that the multiple domain walls in our samples effectively behave as a single wall.

3.
Phys Rev E ; 103(5-1): 052114, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134250

RESUMO

Mean-field theory is an approximation replacing an extended system by a few variables. For depinning of elastic manifolds, these are the position u of its center of mass and the statistics of the forces F(u). There are two proposals how to model the latter: as a random walk (ABBM model), or as uncorrelated forces at integer u (discretized particle model, DPM). While for many experiments the ABBM model (in the literature misleadingly equated with mean-field theory) makes quantitatively correct predictions for the distributions of velocities, or avalanche size and duration, the microscopic disorder force-force correlations cannot grow linearly, and thus unboundedly as a random walk, with distance. Even the effective (renormalized) disorder forces which do so at small distances are bounded at large distances. To describe both regimes, we model forces as an Ornstein-Uhlenbeck process. The latter has the statistics of a random walk at small scales, and is uncorrelated at large scales. By connecting to results in both limits, we solve the model largely analytically, allowing us to describe in all regimes the distributions of velocity, avalanche size, and duration. To establish experimental signatures of this transition, we study the response function, and the correlation function of position u, velocity u[over ̇], and forces F under slow driving with velocity v>0. While at v=0 force or position correlations have a cusp at the origin and then decay at least exponentially fast to zero, this cusp is rounded at a finite driving velocity. We give a detailed analytic analysis for this rounding by velocity, which allows us, given experimental data, to extract the timescale of the response function, and to reconstruct the force-force correlator at v=0. The latter is the central object of the field theory, and as such contains detailed information about the universality class in question. We test our predictions by careful numerical simulations extending over up to ten orders in magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA