Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oncogene ; 24(48): 7135-44, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16044158

RESUMO

The nucleotide excision repair (NER) system consists of two sub-pathways, global genome repair (GGR) and transcription-coupled repair (TCR), which exhibit distinct functions in the cellular response to genotoxic stress. Defects in TCR result in prolonged UV light-induced stalling of RNA polymerase II and hypersensitivity to apoptosis induced by UV and certain chemotherapeutic drugs. Here, we show that low doses of UV trigger delayed activation of the stress-induced MAPkinase JNK and its proapoptotic targets c-Jun and ATF-3 in TCR-deficient primary human fibroblasts from Xeroderma Pigmentosum (XP) and Cockayne syndrome (CS) patients. This delayed activation of the JNK pathway is not observed in GGR-deficient TCR-proficient XP cells, is independent of functional p53, and is established through repression of the JNK-phosphatase MKP-1 rather than by activation of the JNK kinases MKK4 and 7. Enzymatic reversal of UV-induced cyclobutane pyrimidine dimers (CPDs) by CPD photolyase abrogated JNK activation, MKP-1 repression, and apoptosis in TCR-deficient XPA cells. Ectopic expression of MKP-1 inhibited DNA-damage-induced JNK activity and apoptosis. These results identify both MKP-1 and JNK as sensors and downstream effectors of persistent DNA damage in transcribed genes and suggest a link between the JNK pathway and UV-induced stalling of RNApol II.


Assuntos
Apoptose/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Dano ao DNA , Proteínas Imediatamente Precoces/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Transcrição Gênica , Linhagem Celular Transformada , Transformação Celular Viral , Células Cultivadas , Síndrome de Cockayne/genética , Reparo do DNA , Fosfatase 1 de Especificidade Dupla , Fibroblastos/efeitos da radiação , Citometria de Fluxo , Humanos , Proteína Fosfatase 1 , Fator de Transcrição AP-1/metabolismo , Raios Ultravioleta , Xeroderma Pigmentoso/genética , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
2.
Cancer Res ; 62(5): 1338-42, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11888902

RESUMO

Xeroderma pigmentosum (XP) patients are deficient in nucleotide excision repair (NER) because of mutations in one of the genes coding for NER enzymes. This results predominantly in high frequency of UV-induced skin tumors at an early age; the most severe phenotype is found in patients of complementation group A (XPA). However, in a subset of these XPA patients no skin tumors appear, even at advanced age. Fibroblasts of this subset of patients are not capable of raising UV-induced enhanced reactivation (ER) of viruses and up-regulation of ornithine decarboxylase (ODC). We hypothesized that prevention of ODC induction would protect NER-deficient patients from cancer. To simulate the situation in XPA patients, we used a hairless Xpa knockout mouse model and down-regulated the ODC activity by difluoromethylornithine (DFMO) administered in the drinking water. The DFMO treatment significantly suppressed UV-induced carcinogenesis. In a crossover study, we additionally found that discontinuation of the DFMO treatment resulted in a rapid appearance of skin tumors, up to levels found in mice not treated with DFMO. Late-stage DFMO treatment significantly reduced the number of carcinomas by a factor of 2-3, and it appeared to select for carcinomas with high ODC activity. These results indicate that DFMO suppresses the outgrowth but not the initiation of UV-induced tumors. The DFMO treatment reduced the tumor load but did not offer the Xpa knockout mice full protection against UV carcinogenesis.


Assuntos
Anticarcinógenos/uso terapêutico , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Eflornitina/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Neoplasias Induzidas por Radiação/prevenção & controle , Inibidores da Ornitina Descarboxilase , Proteínas de Ligação a RNA/fisiologia , Neoplasias Cutâneas/prevenção & controle , Animais , Feminino , Masculino , Camundongos , Camundongos Pelados , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Induzidas por Radiação/enzimologia , Neoplasias Induzidas por Radiação/etiologia , Pele/efeitos dos fármacos , Pele/enzimologia , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/etiologia , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A
3.
Oncogene ; 22(27): 4235-42, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12833146

RESUMO

Exposure of human cells to genotoxic agents induces various signaling pathways involved in the execution of stress- and DNA-damage responses. Inappropriate functioning of the DNA-damage response to ionizing radiation (IR) is associated with the human diseases ataxia-telangiectasia (A-T) and Nijmegen Breakage syndrome (NBS). Here, we show that IR efficiently induces Jun/ATF transcription factor activity in normal human diploid fibroblasts, but not in fibroblasts derived from A-T and NBS patients. IR was found to enhance the expression of c-Jun and, in particular, ATF3, but, in contrast to various other stress stimuli, did not induce the expression of c-Fos. Using specific inhibitors, we found that the ATM- and Nibrin1-dependent activation of ATF3 does neither require p53 nor reactive oxygen species, but is dependent on the p38 and JNK MAPkinases. Via these kinases, IR activates ATF-2, one of the transcription factors acting on the atf3 promoter. The activation of ATF-2 by IR resembles ATF-2 activation by certain growth factors, since IR mainly induced the second step of ATF-2 phosphorylation via the stress-inducible MAPkinases, phosphorylation of Thr69. As IR does not enhance ATF-2 phosphorylation in ATM and Nibrin1-deficient cells, both ATF-2 and ATF3 seem to play an important role in the protective response of human cells to IR.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Sistema de Sinalização das MAP Quinases , Radiação Ionizante , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fator 2 Ativador da Transcrição , Fator 3 Ativador da Transcrição , Proteínas Mutadas de Ataxia Telangiectasia , Northern Blotting , Western Blotting , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Dano ao DNA , Proteínas de Ligação a DNA , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno , Cinética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Fosforilação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor , Proteínas Quinases p38 Ativadas por Mitógeno
4.
DNA Repair (Amst) ; 2(11): 1211-25, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14599743

RESUMO

Recombination can result in genetic instability, and thus constitutes an important factor in the carcinogenic conversion of mammalian cells. Here we describe the occurrence of UV-stimulated recombination called enhanced recombination (EREC), measured with the use of Herpes Simplex Viruses type 1 mutants. In normal diploid human cells, EREC is induced by UV-C, mitomycin C and ENU, but not by X-ray or MMS. The kinetics of induction of EREC is similar to that of other SOS-like responses such as enhanced reactivation (ER) and enhanced mutagenesis (EM). In contrast to the latter responses, EREC is induced to higher levels and persists for longer periods in DNA repair deficient fibroblasts derived from xeroderma pigmentosum (XP), Cockayne syndrome (CS) and Trichothiodystrophy (TTD) patients. This observation indicates that EREC is a distinct SOS-like response. Apparently, the presence of unrepaired DNA lesions in the host genome is a strongly inducing signal for EREC. On the other hand, in cells derived from patients suffering from Bloom, Werner or Rothmund-Thomson syndrome (RTS) the EREC response is absent. These data indicate that determining EREC is a useful assay to investigate diploid human fibroblasts for abnormalities in UV-stimulated recombination.


Assuntos
Síndrome de Cockayne/genética , Reparo do DNA , Doenças do Cabelo/genética , Recombinação Genética , Xeroderma Pigmentoso/genética , Animais , Células Cultivadas , Cricetinae , Cricetulus , Dano ao DNA , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Herpesvirus Humano 1/genética , Humanos , Cinética , Mutação , Pele/citologia , Fatores de Tempo , Raios Ultravioleta
5.
Mutat Res ; 499(1): 53-61, 2002 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-11804604

RESUMO

Treatment of cells with genotoxic agents affects protein degradation in both positive and negative ways. Exposure of S. cerevisiae to the alkylating agent MMS resulted in activation of genes that are involved in ubiquitin- and 26S proteasome-dependent protein degradation. This process partially overlaps with the activation of the ER-associated protein degradation pathway. The DNA repair protein Rad23p and its mammalian homologues have been shown to inhibit degradation of specific substrates in response to DNA damage. Particularly the recently identified inhibition of degradation by mouse Rad23 protein (mHR23) of the associated nucleotide excision repair protein XPC was shown to stimulate DNA repair.Recently, it was shown that Rad23p and the mouse homologue mHR23B also associate with Png1p, a deglycosylation enzyme. Png1p-mediated deglycosylation plays a role in ER-associated protein degradation after accumulation of malfolded proteins in the endoplasmic reticulum. Thus, if stabilization of proteins that are associated with the C-terminus of Rad23p is a general phenomenon, then Rad23 might be implicated in the stimulation of ER-associated protein degradation as well. Interestingly, the recently identified HHR23-like protein Mif1 is also thought to play a role in ER-associated protein degradation. The MIF1 gene is strongly activated in response to ER-stress. Mif1 contains a ubiquitin-like domain which is most probably involved in binding to S5a, a subunit of the 19S regulatory complex of the 26S proteasome. On the basis of its localization in the ER-membrane, it is hypothesized that Mif1 could play a role in the translocation of the 26S proteasome towards the ER-membrane, thereby enhancing ER-associated protein degradation.


Assuntos
Proteínas de Bactérias , Dano ao DNA/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Peptídeo Hidrolases/metabolismo , Complexo de Endopeptidases do Proteassoma , Proteínas Serina-Treonina Quinases , Proteínas/metabolismo , Proteínas de Saccharomyces cerevisiae , Animais , Dano ao DNA/efeitos dos fármacos , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metanossulfonato de Metila/farmacologia , Poliubiquitina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Subtilisinas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA