Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Plant Cell ; 28(12): 2937-2951, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27920338

RESUMO

Organ formation in animals and plants relies on precise control of cell state transitions to turn stem cell daughters into fully differentiated cells. In plants, cells cannot rearrange due to shared cell walls. Thus, differentiation progression and the accompanying cell expansion must be tightly coordinated across tissues. PLETHORA (PLT) transcription factor gradients are unique in their ability to guide the progression of cell differentiation at different positions in the growing Arabidopsis thaliana root, which contrasts with well-described transcription factor gradients in animals specifying distinct cell fates within an essentially static context. To understand the output of the PLT gradient, we studied the gene set transcriptionally controlled by PLTs. Our work reveals how the PLT gradient can regulate cell state by region-specific induction of cell proliferation genes and repression of differentiation. Moreover, PLT targets include major patterning genes and autoregulatory feedback components, enforcing their role as master regulators of organ development.


Assuntos
Arabidopsis/citologia , Arabidopsis/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Raízes de Plantas/citologia , Raízes de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Nucleic Acids Res ; 43(14): e89, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25870415

RESUMO

There is an increasing interest in complementing RNA-seq experiments with small-RNA (sRNA) expression data to obtain a comprehensive view of a transcriptome. Currently, two main experimental challenges concerning sRNA-seq exist: how to check the size distribution of isolated sRNAs, given the sensitive size-selection steps in the protocol; and how to normalize data between samples, given the low complexity of sRNA types. We here present two separate sets of synthetic RNA spike-ins for monitoring size-selection and for performing data normalization in sRNA-seq. The size-range quality control (SRQC) spike-in set, consisting of 11 oligoribonucleotides (10-70 nucleotides), was tested by intentionally altering the size-selection protocol and verified via several comparative experiments. We demonstrate that the SRQC set is useful to reproducibly track down biases in the size-selection in sRNA-seq. The external reference for data-normalization (ERDN) spike-in set, consisting of 19 oligoribonucleotides, was developed for sample-to-sample normalization in differential-expression analysis of sRNA-seq data. Testing and applying the ERDN set showed that it can reproducibly detect differential expression over a dynamic range of 2(18). Hence, biological variation in sRNA composition and content between samples is preserved while technical variation is effectively minimized. Together, both spike-in sets can significantly improve the technical reproducibility of sRNA-seq.


Assuntos
Perfilação da Expressão Gênica/normas , Pequeno RNA não Traduzido/metabolismo , Análise de Sequência de RNA/normas , Animais , Controle de Qualidade , Pequeno RNA não Traduzido/química , Padrões de Referência , Peixe-Zebra/genética
3.
Plant J ; 84(4): 773-84, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26415082

RESUMO

Intercellular signaling through trafficking of regulatory proteins is a widespread phenomenon in plants and can deliver positional information for the determination of cell fate. In the Arabidopsis root meristem, the cell fate determinant SHORT-ROOT (SHR), a GRAS domain transcription factor, acts as a signaling molecule from the stele to the adjacent layer to specify endodermal cell fate. Upon exiting the stele, SHR activates another GRAS domain transcription factor, SCARCROW (SCR), which, together with several BIRD/INDETERMINATE DOMAIN proteins, restricts movement of SHR to define a single cell layer of endodermis. Here we report that endodermal cell fate also requires the joint activity of both SCR and its closest homologue SCARECROW-LIKE23 (SCL23). We show that SCL23 protein moves with zonation-dependent directionality. Within the meristem, SCL23 exhibits short-ranged movement from ground tissue to vasculature. Away from the meristem, SCL23 displays long-range rootward movement into meristematic vasculature and a bidirectional radial spread, respectively. As a known target of SHR and SCR, SCL23 also interacts with SCR and SHR and can restrict intercellular outspread of SHR without relying on nuclear retention as SCR does. Collectively, our data show that SCL23 is a mobile protein that controls movement of SHR and acts redundantly with SCR to specify endodermal fate in the root meristem.


Assuntos
Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Movimento Celular/genética , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Meristema/citologia , Meristema/genética , Meristema/metabolismo , Microscopia Confocal , Raízes de Plantas/citologia , Raízes de Plantas/genética , Brotos de Planta/citologia , Brotos de Planta/genética , Feixe Vascular de Plantas/citologia , Feixe Vascular de Plantas/genética , Feixe Vascular de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
4.
Planta ; 243(5): 1159-68, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26848984

RESUMO

MAIN CONCLUSION: SCARECROW controls Arabidopsis root meristem size from the root endodermis tissue by regulating the DELLA protein RGA that in turn mediates the regulation of ARR1 levels at the transition zone. Coherent organ growth requires a fine balance between cell division and cell differentiation. Intriguingly, plants continuously develop organs post-embryonically thanks to the activity of meristems that allow growth and environmental plasticity. In Arabidopsis thaliana, continued root growth is assured when division of the distal stem cell and their daughters is balanced with cell differentiation at the meristematic transition zone (TZ). We have previously shown that at the TZ, the cytokinin-dependent transcription factor ARR1 controls the rate of differentiation commitment of meristematic cells and that its activities are coordinated with those of the distal stem cells by the gene SCARECROW (SCR). In the stem cell organizer (the quiescent center, QC), SCR directly suppresses ARR1 both sustaining stem cell activities and titrating non-autonomously the ARR1 transcript levels at the TZ via auxin. Here, we show that SCR also exerts a fine control on ARR1 levels at the TZ from the endodermis by sustaining gibberellin signals. From the endodermis, SCR controls the RGA REPRESSOR OF ga1-3 (RGA) DELLA protein stability throughout the root meristem, thus controlling ARR1 transcriptional activation at the TZ. This guarantees robustness and fineness to the control of ARR1 levels necessary to balance cell division to cell differentiation in sustaining coherent root growth. Therefore, this work advances the state of the art in the field of root meristem development by integrating the activity of three hormones, auxin, gibberellin, and cytokinin, under the control of different tissue-specific activities of a single root key regulator, SCR.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Meristema/genética , Raízes de Plantas/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/citologia , Células Vegetais/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Processamento de Proteína Pós-Traducional , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Semin Cell Dev Biol ; 20(9): 1089-96, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19772947

RESUMO

The plant basic body plan is laid down during embryogenesis. All post-embryonic development has its origin in the stem cells located in niches in the heart of the shoot and root meristems. Creating the root niche requires auxin dependent patterning cues that provide positional information in combination with parallel inputs to specify and maintain the root stem cell niche from embryogenesis onwards. Once established, the architecture of the root niche differs from that in the shoot but recent findings reveal a conserved module for stem cell control. Important for stem cell maintenance is the balance between cell division and differentiation. Dealing with the environment is the biggest challenge for plants and that includes complete regeneration of stem cell systems upon damage. Here we will address these issues as we follow the formation, function and maintenance of the root stem cell niche during development.


Assuntos
Arabidopsis/metabolismo , Meristema/citologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Células-Tronco/citologia , Padronização Corporal , Diferenciação Celular , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/metabolismo , Transcrição Gênica
6.
Plant Physiol ; 154(3): 1067-78, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20833726

RESUMO

Gene expression differences between individuals within a species can be largely explained by differences in genetic background. The effect of genetic variants (alleles) of genes on expression can be studied in a multifactorial way by the application of genetical genomics or expression quantitative trait locus mapping. In this paper, we present a strategy to construct regulatory networks by the application of genetical genomics in combination with transcript profiling of mutants that are disrupted in single genes. We describe the network identification downstream of the receptor-like kinase ERECTA in Arabidopsis (Arabidopsis thaliana). Extending genetical genomics on the Landsberg erecta/Cape Verde Islands (Ler/Cvi) recombinant inbred population with expression profiling of monogenic mutants enabled the identification of regulatory networks in the so far elusive ERECTA signal transduction cascade. We provide evidence that ERECTA is the causal gene for the major hotspot for transcript regulation in the Arabidopsis Ler/Cvi recombinant inbred population. We further propose additional genetic variation between Ler and Cvi in loci of the signaling pathway downstream of ERECTA and suggest candidate genes underlying these loci. Integration of publicly available microarray expression data of other monogenic mutants allowed us to link ERECTA to a downstream mitogen-activated protein kinase signaling cascade. Our study shows that microarray data of monogenic mutants can be effectively used in combination with genetical genomics data to enhance the identification of genetic regulatory networks.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Genômica/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Sistema de Sinalização das MAP Quinases , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/genética , Locos de Características Quantitativas , Receptores de Superfície Celular/genética , Fatores de Transcrição/metabolismo
8.
Sci Rep ; 6: 32196, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553690

RESUMO

Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes. Consistent with PPP1 DNA-binding activity, PPP1 reporter proteins are nuclear localized and analysis of PPP1 null alleles and knockdown lines indicated a function as a positive regulator of PIN expression. Furthermore, we show that ppp1 pleiotropic mutant phenotypes are partially reverted by PIN overexpression, and results are presented that underline a role of PPP1-PIN promoter interaction in PIN expression control. Collectively, our findings identify an elementary, thus far unknown, plant-specific DNA-binding protein required for post-embryonic plant development, in general, and correct expression of PIN genes, in particular.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/química , Sítios de Ligação , Núcleo Celular/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica de Plantas , Meristema/fisiologia , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas de Ligação a RNA/química
9.
Dev Cell ; 26(4): 405-15, 2013 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-23987513

RESUMO

A critical issue in development is the coordination of the activity of stem cell niches with differentiation of their progeny to ensure coherent organ growth. In the plant root, these processes take place at opposite ends of the meristem and must be coordinated with each other at a distance. Here, we show that in Arabidopsis, the gene SCR presides over this spatial coordination. In the organizing center of the root stem cell niche, SCR directly represses the expression of the cytokinin-response transcription factor ARR1, which promotes cell differentiation, controlling auxin production via the ASB1 gene and sustaining stem cell activity. This allows SCR to regulate, via auxin, the level of ARR1 expression in the transition zone where the stem cell progeny leaves the meristem, thus controlling the rate of differentiation. In this way, SCR simultaneously controls stem cell division and differentiation, ensuring coherent root growth.


Assuntos
Arabidopsis/citologia , Diferenciação Celular , Meristema/citologia , Células-Tronco/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular/efeitos dos fármacos , Citocininas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/efeitos dos fármacos , Meristema/metabolismo , Modelos Biológicos , Nicho de Células-Tronco/efeitos dos fármacos , Nicho de Células-Tronco/genética , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo
10.
Front Genet ; 3: 317, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23335938

RESUMO

One of the major goals of quantitative genetics is to unravel the complex interactions between molecular genetic factors and the environment. The effects of these genotype-by-environment interactions also affect and cause variation in gene expression. The regulatory loci responsible for this variation can be found by genetical genomics that involves the mapping of quantitative trait loci (QTLs) for gene expression traits also called expression-QTL (eQTLs). Most genetical genomics experiments published so far, are performed in a single environment and hence do not allow investigation of the role of genotype-by-environment interactions. Furthermore, most studies have been done in a steady state environment leading to acclimated expression patterns. However a response to the environment or change therein can be highly plastic and possibly lead to more and larger differences between genotypes. Here we present a genetical genomics study on 120 Arabidopsis thaliana, Landsberg erecta × Cape Verde Islands, recombinant inbred lines (RILs) in active response to the environment by treating them with 3 h of shade. The results of this experiment are compared to a previous study on seedlings of the same RILs from a steady state environment. The combination of two highly different conditions but exactly the same RILs with a fixed genetic variation showed the large role of genotype-by-environment interactions on gene expression levels. We found environment-dependent hotspots of transcript regulation. The major hotspot was confirmed by the expression profile of a near isogenic line. Our combined analysis leads us to propose CSN5A, a COP9 signalosome component, as a candidate regulator for the gene expression response to shade.

11.
Proc Natl Acad Sci U S A ; 104(5): 1708-13, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17237218

RESUMO

Accessions of a plant species can show considerable genetic differences that are analyzed effectively by using recombinant inbred line (RIL) populations. Here we describe the results of genome-wide expression variation analysis in an RIL population of Arabidopsis thaliana. For many genes, variation in expression could be explained by expression quantitative trait loci (eQTLs). The nature and consequences of this variation are discussed based on additional genetic parameters, such as heritability and transgression and by examining the genomic position of eQTLs versus gene position, polymorphism frequency, and gene ontology. Furthermore, we developed an approach for genetic regulatory network construction by combining eQTL mapping and regulator candidate gene selection. The power of our method was shown in a case study of genes associated with flowering time, a well studied regulatory network in Arabidopsis. Results that revealed clusters of coregulated genes and their most likely regulators were in agreement with published data, and unknown relationships could be predicted.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Locos de Características Quantitativas , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Modelos Genéticos , Modelos Estatísticos , Análise de Sequência com Séries de Oligonucleotídeos , Mapeamento Físico do Cromossomo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA