Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 186(5): 975-986.e13, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868215

RESUMO

Gas vesicles are gas-filled nanocompartments that allow a diverse group of bacteria and archaea to control their buoyancy. The molecular basis of their properties and assembly remains unclear. Here, we report the 3.2 Å cryo-EM structure of the gas vesicle shell made from the structural protein GvpA that self-assembles into hollow helical cylinders closed off by cone-shaped tips. Two helical half shells connect through a characteristic arrangement of GvpA monomers, suggesting a mechanism of gas vesicle biogenesis. The fold of GvpA features a corrugated wall structure typical for force-bearing thin-walled cylinders. Small pores enable gas molecules to diffuse across the shell, while the exceptionally hydrophobic interior surface effectively repels water. Comparative structural analysis confirms the evolutionary conservation of gas vesicle assemblies and demonstrates molecular features of shell reinforcement by GvpC. Our findings will further research into gas vesicle biology and facilitate molecular engineering of gas vesicles for ultrasound imaging.


Assuntos
Archaea , Evolução Biológica , Microscopia Crioeletrônica , Engenharia , Reforço Psicológico
2.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39211282

RESUMO

Light-sheet fluorescence microscopy has revolutionized biology by visualizing dynamic cellular processes in three dimensions. However, light scattering in thick tissue and photobleaching of fluorescent reporters limit this method to studying thin or translucent specimens. Here we show that non-diffractive ultrasonic beams used in conjunction with a cross-amplitude modulation sequence and nonlinear acoustic reporters enable fast and volumetric imaging of targeted biological functions. We report volumetric imaging of tumor gene expression at the cm 3 scale using genetically encoded gas vesicles, and localization microscopy of currently uncharted cerebral capillary networks using intravascular microbubble contrast agents. Nonlinear sound-sheet microscopy provides a ∼64x acceleration in imaging speed, ∼35x increase in imaged volume and ∼4x increase in classical imaging resolution compared to the state-of-the-art in biomolecular ultrasound.

3.
Neuroscience ; 474: 122-133, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33727074

RESUMO

Ultrasound imaging is one of the most widely used modalities in clinical practice, revealing human prenatal development but also arterial function in the adult brain. Ultrasound waves travel deep within soft biological tissues and provide information about the motion and mechanical properties of internal organs. A drawback of ultrasound imaging is its limited ability to detect molecular targets due to a lack of cell-type specific acoustic contrast. To date, this limitation has been addressed by targeting synthetic ultrasound contrast agents to molecular targets. This molecular ultrasound imaging approach has proved to be successful but is restricted to the vascular space. Here, we introduce the nascent field of biomolecular ultrasound imaging, a molecular imaging approach that relies on genetically encoded acoustic biomolecules to interface ultrasound waves with cellular processes. We review ultrasound imaging applications bridging wave physics and chemical engineering with potential for deep brain imaging.


Assuntos
Acústica , Meios de Contraste , Encéfalo/diagnóstico por imagem , Humanos , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA