Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Phys Chem Chem Phys ; 24(43): 26499-26510, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305719

RESUMO

The gas-phase bimolecular reaction of the methylidyne (CH; X2Π) radical with vinylacetylene (H2CCHCCH; X1A') was conducted at a collision energy of 20.3 kJ mol-1 under single collision conditions exploiting the crossed molecular beam experimental results merged with ab initio electronic structure calculations and ab initio molecular dynamics (AIMD) simulations. The laboratory data reveal that the bimolecular reaction proceeds barrierlessly via indirect scattering dynamics through long-lived C5H5 reaction intermediate(s) ultimately dissociating to C5H4 isomers along with atomic hydrogen with the latter predominantly originating from the vinylacetylene reactant as confirmed by the isotopic substitution experiments in the D1-methylidyne-vinylacetylene reaction. Combined with ab initio calculations of the potential energy surface (PES) and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations, the experimental determined reaction energy of -146 ± 26 kJ mol-1 along with the distribution minimum of T(θ) at 90° and isotopic substitution experiments suggest ethynylallene (p1; ΔrG = -230 ± 4 kJ mol-1) as the dominant product. The ethynylallene (p1) may be formed with extensive rovibrational excitation, which would result in a lower maximum translational energy. Further, AIMD simulations reveal that the reaction dynamics leads to p1 (ethynylallene, 75%) plus atomic hydrogen with the dominant initial complex being i1 formed by methylidyne radical addition to the double CC bond in vinylacetylene. Overall, combining the crossed molecular beam experimental results with ab initio electronic structure calculations and ab initio molecular dynamics (AIMD) simulations, ethynylallene (p1) is expected to represent the dominant product in the reaction of the methylidyne (CH; X2Π) radical with vinylacetylene (H2CCHCCH; X1A').

2.
J Phys Chem A ; 126(21): 3347-3357, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35584043

RESUMO

We investigated the formation of small organosilicon molecules─potential precursors to silicon-carbide dust grains ejected by dying carbon-rich asymptotic giant branch stars─in the gas phase via the reaction of atomic carbon (C) in its 3P electronic ground state with silane (SiH4; X1A1) using the crossed molecular beams technique. The reactants collided under single collision conditions at a collision energy of 13.0 ± 0.2 kJ mol-1, leading to the formation of the silylenemethyl radical (HCSiH2; X2B2) via the unimolecular decomposition of triplet silaethylene (H2CSiH2; a3A″). The silaethylene radical was formed via hydrogen migration of the triplet silylmethylene (HCSiH3; X3A″) radical, which in turn was identified as the initial collision complex accessed via the barrierless insertion of atomic carbon into the silicon-hydrogen bond of silane. Our results mark the first observation of the silylenemethyl radical, where previously only its thermodynamically more stable methylsilylidyne (CH3Si; X2A″) and methylenesilyl (CH2SiH; X2A') isomers were observed in low-temperature matrices. Considering the abundance of silane and the availability of atomic carbon in carbon-rich circumstellar environments, our results suggest that future astrochemical models should be updated to include contributions from small saturated organosilicon molecules as potential precursors to pure gaseous silicon-carbides and ultimately to silicon-carbide dust.

3.
J Phys Chem A ; 126(34): 5768-5775, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993843

RESUMO

The photodissociation dynamics of astrophysically relevant propyl derivatives (C3H7X; X = CN, OH, HCO) at 157 nm exploiting an ultracompact velocity map imaging (UVMIS) setup has been reported. The successful operation of UVMIS allowed the exploration of the 157 nm photodissociation of six (iso)propyl systems─n/i-propyl cyanide (C3H7CN), n/i-propyl alcohol (C3H7OH), and (iso)butanal (C3H7CHO)─to explore the C3H7 loss channel. The distinct center-of-mass translational energy distributions for the i-C3H7X (X= CN, OH, HCO) could be explained through preferential excitation of the low frequency C-H bending modes of the formyl moiety compared to the higher frequency stretching of the cyano and hydroxy moieties. Although the ionization energy of the n-C3H7 radical exceeds the energy of a 157 nm photon, C3H7+ was observed in the n-C3H7X (X = CN, OH, HCO) systems as a result of photoionization of vibrationally "hot" n-C3H7 fragments, photoionization of i-C3H7 after a hydrogen shift in vibrationally "hot" n-C3H7 radicals, and/or two-photon ionization. Our experiments reveal that at least the isopropyl radical (i-C3H7) and possibly the normal propyl radical (n-C3H7) should be present in the interstellar medium and hence searched for by radio telescopes.

4.
J Phys Chem A ; 125(1): 126-138, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33397109

RESUMO

The bimolecular gas-phase reaction of the methylidyne radical (CH; X2Π) with 1,2-butadiene (CH2CCHCH3; X1A') was investigated at a collision energy of 20.6 kJ mol-1 under single collision conditions. Combining our laboratory data with high-level electronic structure calculations, we reveal that this bimolecular reaction proceeds through the barrierless addition of the methylidyne radical to the carbon-carbon double bonds of 1,2-butadiene leading to doublet C5H7 intermediates. These collision adducts undergo a nonstatistical unimolecular decomposition through atomic hydrogen elimination to at least the cyclic 1-vinyl-cyclopropene (p5/p26), 1-methyl-3-methylenecyclopropene (p28), and 1,2-bis(methylene)cyclopropane (p29) in overall exoergic reactions. The barrierless nature of this bimolecular reaction suggests that these cyclic C5H6 isomers might be viable targets to be searched for in cold molecular clouds like TMC-1.

5.
J Am Chem Soc ; 142(6): 3205-3213, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31961149

RESUMO

The fulvenallene molecule (C7H6) has been synthesized via the elementary gas-phase reaction of the methylidyne radical (CH) with the benzene molecule (C6H6) on the doublet C7H7 surface under single collision conditions. The barrier-less route to the cyclic fulvenallene molecule involves the addition of the methylidyne radical to the π-electron density of benzene leading eventually to a Jahn-Teller distorted tropyl (C7H7) radical intermediate and exotic ring opening-ring contraction sequences terminated by atomic hydrogen elimination. The methylidyne-benzene system represents a benchmark to probe the outcome of the elementary reaction of the simplest hydrocarbon radical-methylidyne-with the prototype of a closed-shell aromatic molecule-benzene-yielding nonbenzenoid fulvenallene. Combined with electronic structure and statistical calculations, this bimolecular reaction sheds light on the unusual reaction dynamics of Hückel aromatic systems and remarkable (polycyclic) reaction intermediates, which cannot be studied via classical organic, synthetic methods, thus opening up a versatile path to access this previously largely obscure class of fulvenallenes.

6.
Chemphyschem ; 21(12): 1295-1309, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32291897

RESUMO

The crossed molecular beam reactions of the methylidyne radical (CH; X2 Π) with 1,3-butadiene (CH2 CHCHCH2 ; X1 Ag ) along with their (partially) deuterated counterparts were performed at collision energies of 20.8 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio calculations, we reveal that the methylidyne radical may add barrierlessly to the terminal carbon atom and/or carbon-carbon double bond of 1,3-butadiene, leading to doublet C5 H7 intermediates with life times longer than the rotation periods. These collision complexes undergo non-statistical unimolecular decomposition through hydrogen atom emission yielding the cyclic cis- and trans-3-vinyl-cyclopropene products with reaction exoergicities of 119±42 kJ mol-1 . Since this reaction is barrierless, exoergic, and all transition states are located below the energy of the separated reactants, these cyclic C5 H6 products are predicted to be accessed even in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and cold molecular clouds such as TMC-1.

7.
Chemphyschem ; 20(15): 1912-1917, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31162781

RESUMO

Methyltriacetylene - the largest methylated polyacetylene detected in deep space - has been synthesized in the gas phase via the bimolecular reaction of the 1-propynyl radical with diacetylene under single-collision conditions. The barrier-less route to methyltriacetylene represents a prototype of a polyyne chain extension through a radical substitution mechanism and provides a novel low temperature route, in which the propynyl radical piggybacks a methyl group to be incorporated into methylated polyynes. This mechanism overcomes a key obstacle in previously postulated reactions of methyl radicals with unsaturated hydrocarbon, which fail the inclusion of methyl groups into hydrocarbons due to insurmountable entrance barriers thus providing a fundamental understanding on the electronic structure, chemical bonding, and formation of methyl-capped polyacetylenes. These species are key reactive intermediates leading to carbonaceous nanostructures in molecular clouds like TMC-1.


Assuntos
Alcinos/síntese química , Radicais Livres/química , Gases/química , Temperatura Baixa , Modelos Químicos , Termodinâmica
8.
Phys Chem Chem Phys ; 21(40): 22308-22319, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31576858

RESUMO

The crossed molecular beam reactions of the 1-propynyl radical (CH3CC; X2A1) with ethylene (H2CCH2; X1A1g) and ethylene-d4 (D2CCD2; X1A1g) were performed at collision energies of 31 kJ mol-1 under single collision conditions. Combining our laboratory data with ab initio electronic structure and statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations, we reveal that the reaction is initiated by the barrierless addition of the 1-propynyl radical to the π-electron density of the unsaturated hydrocarbon of ethylene leading to a doublet C5H7 intermediate(s) with a life time(s) longer than the rotation period(s). The reaction eventually produces 1-penten-3-yne (p1) plus a hydrogen atom with an overall reaction exoergicity of 111 ± 16 kJ mol-1. About 35% of p1 originates from the initial collision complex followed by C-H bond rupture via a tight exit transition state located 22 kJ mol-1 above the separated products. The collision complex (i1) can also undergo a [1,2] hydrogen atom shift to the CH3CHCCCH3 intermediate (i2) prior to a hydrogen atom release; RRKM calculations suggest that this pathway contributes to about 65% of p1. In higher density environments such as in combustion flames and circumstellar envelopes of carbon stars close to the central star, 1-penten-3-yne (p1) may eventually form the cyclopentadiene (c-C5H6) isomer via hydrogen atom assisted isomerization followed by hydrogen abstraction to the cyclopentadienyl radical (c-C5H5) as an important pathway to key precursors to polycyclic aromatic hydrocarbons (PAHs) and to carbonaceous nanoparticles.

9.
J Phys Chem A ; 123(49): 10543-10555, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31718184

RESUMO

The crossed molecular beam reactions of the methylidyne radical (CH; X2Π) with propylene (CH3CHCH2; X1A') along with (partially) substituted reactants were conducted at collision energies of 19.3 kJ mol-1. Combining our experimental data with ab initio electronic structure and statistical calculations, the methylidyne radical is revealed to add barrierlessly to the carbon-carbon double bond of propylene reactant resulting in a cyclic doublet C4H7 intermediate with a lifetime longer than its rotation period. These adducts undergo a nonstatistical unimolecular decomposition via atomic hydrogen loss through tight exit transition states forming the cyclic products 1-methylcyclopropene and 3-methylcyclopropene with overall reaction exoergicities of 168 ± 25 kJ mol-1. These C4H6 isomers are predicted to exist even in low-temperature environments such as cold molecular clouds like TMC-1, since the reaction is barrierless and exoergic, all transition states are below the energy of the separated reactants, and both the methylidyne radical (CH; X2Π) and propylene reactant were detected in cold molecular clouds such as TMC-1.

10.
J Phys Chem A ; 123(26): 5446-5462, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31179701

RESUMO

The reactions of the 1-propynyl radical (CH3CC; X2A1) with two C3H4 isomers, methylacetylene (H3CCCH; X1A1) and allene (H2CCCH2; X1A1), along with their (partially) deuterated counterparts were explored at collision energies of 37 kJ mol-1, exploiting crossed molecular beams to unravel the chemical reaction dynamics to synthesize distinct C6H6 isomers under single collision conditions. The forward convolution fitting of the laboratory data along with ab initio and statistical calculations revealed that both reactions have no entrance barrier, proceed via indirect (complex-forming) reaction dynamics involving C6H7 intermediates with life times longer than their rotation period(s), and are initiated by the addition of the 1-propynyl radical with its radical center to the π-electron density of the unsaturated hydrocarbon at the terminal carbon atoms of methylacetylene (C1) and allene (C1/C3). In the methylacetylene system, the initial collision complexes undergo unimolecular decomposition via tight exit transition states by atomic hydrogen loss, forming dimethyldiacetylene (CH3CCCCCH3) and 1-propynylallene (H3CCCHCCCH2) in overall exoergic reactions (123 and 98 kJ mol-1) with a branching ratio of 9.4 ± 0.1; the methyl group of the 1-propynyl reactant acts solely as a spectator. On the other hand, in the allene system, our experimental data exhibit the formation of the fulvene (c-C5H4CH2) isomer via a six-step reaction sequence with two higher energy isomers-hexa-1,2-dien-4-yne (H2CCCHCCCH3) and hexa-1,4-diyne (HCCCH2CCCH3)-also predicted to be formed based on our statistical calculations. The pathway to fulvene advocates that, in the allene-1-propynyl system, the methyl group of the 1-propynyl reactant is actively engaged in the reaction mechanism to form fulvene. Because both reactions are barrierless and exoergic and all transition states are located below the energy of the separated reactants, the hydrogen-deficient C6H6 isomers identified in our investigation are predicted to be synthesized in low-temperature environments, such as in hydrocarbon-rich atmospheres of planets and their moons such as Titan along with cold molecular clouds such as Taurus Molecular Cloud-1.

11.
J Phys Chem A ; 123(19): 4104-4118, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31017790

RESUMO

The crossed beams reactions of the 1-propynyl radical (CH3CC; X2A1) with 1,3-butadiene (CH2CHCHCH2; X1Ag), 1,3-butadiene- d6 (CD2CDCDCD2; X1Ag), 1,3-butadiene- d4 (CD2CHCHCD2; X1Ag), and 1,3-butadiene- d2 (CH2CDCDCH2; X1Ag) were performed under single collision conditions at collision energies of about 40 kJ mol-1. The underlying reaction mechanisms were unraveled through the combination of the experimental data with electronic structure calculations at the CCSD(T)-F12/cc-pVTZ-f12//B3LYP/6-311G(d,p) + ZPE(B3LYP/6-311G(d,p) level of theory along with statistical Rice-Ramsperger-Kassel-Marcus (RRKM) calculations. Together, these data suggest the formation of the thermodynamically most stable C7H8 isomer-toluene (C6H5CH3)-via the barrierless addition of 1-propynyl to the 1,3-butadiene terminal carbon atom, forming a low-lying C7H9 intermediate that undergoes multiple isomerization steps resulting in cyclization and ultimately aromatization following hydrogen atom elimination. RRKM calculations predict that the thermodynamically less stable isomers 1,3-heptadien-5-yne, 5-methylene-1,3-cyclohexadiene, and 3-methylene-1-hexen-4-yne are also synthesized. Since the 1-propynyl radical may be present in cold molecular clouds such as TMC-1, this pathway could potentially serve as a carrier of the methyl group incorporating itself into methyl-substituted (poly)acetylenes or aromatic systems such as toluene via overall exoergic reaction mechanisms that are uninhibited by an entrance barrier. Such pathways are a necessary alternative to existing high energy reactions leading to toluene that are formally closed in the cold regions of space and are an important step toward understanding the synthesis of polycyclic aromatic hydrocarbons (PAHs) in space's harsh extremes.

12.
Angew Chem Int Ed Engl ; 58(43): 15488-15495, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31368202

RESUMO

The triafulvene molecule (c-C4 H4 )-the simplest representative of the fulvene family-has been synthesized for the first time in the gas phase through the reaction of the methylidyne radical (CH) with methylacetylene (CH3 CCH) and allene (H2 CCCH2 ) under single-collision conditions. The experimental and computational data suggest triafulvene is formed by the barrierless cycloaddition of the methylidyne radical to the π-electron density of either C3 H4 isomer followed by unimolecular decomposition through elimination of atomic hydrogen from the CH3 or CH2 groups of the reactants. The dipole moment of triafulvene of 1.90 D suggests that this molecule could represent a critical tracer of microwave-inactive allene in cold molecular clouds, thus defining constraints on the largely elusive hydrocarbon chemistry in low-temperature interstellar environments, such as that of the Taurus Molecular Cloud 1 (TMC-1).

13.
Phys Chem Chem Phys ; 20(16): 10906-10925, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29537029

RESUMO

The crossed molecular beams technique was utilized to explore the formation of three isomers of resonantly stabilized (C5H3) radicals along with their d2-substituted counterparts via the bimolecular reactions of singlet/triplet dicarbon [C2(X1Σ+g/a3Πu)] with methylacetylene [CH3CCH(X1A1)], d3-methylacetylene [CD3CCH(X1A1)], and 1-butyne [C2H5CCH(X1A')] at collision energies up to 26 kJ mol-1via chemically activated singlet/triplet C5H4/C5D3H and C6H6 intermediates. These studies exploit a newly developed supersonic dicarbon [C2(X1Σ+g/a3Πu)] beam generated via photolysis of tetrachloroethylene [C2Cl4(X1Ag)] by excluding interference from carbon atoms, which represent the dominating (interfering) species in ablation-based dicarbon sources. We evaluated the performance of the dicarbon [C2(X1Σ+g/a3Πu)] beam in reactions with methylacetylene [CH3CCH(X1A1)] and d3-methylacetylene [CD3CCH(X1A1)]; the investigations demonstrate that the reaction dynamics match previous studies in our laboratory utilizing ablation-based dicarbon sources involving the synthesis of 1,4-pentadiynyl-3 [HCCCHCCH(X2B1)] and 2,4-pentadiynyl-1 [H2CCCCCH(X2B1)] radicals via hydrogen (deuterium) atom elimination. Considering the C2(X1Σ+g/a3Πu)-1-butyne [C2H5CCH(X1A')] reaction, the hitherto elusive methyl-loss pathway was detected. This channel forms the previously unknown resonantly stabilized penta-1-yn-3,4-dienyl-1 [H2CCCHCC(X2A)] radical along with the methyl radical [CH3(X2A2'')] and is open exclusively on the triplet surface with an overall reaction energy of -86 ± 10 kJ mol-1. The preferred reaction pathways proceed first by barrierless addition of triplet dicarbon to the π-electronic system of 1-butyne, either to both acetylenic carbon atoms or to the sterically more accessible carbon atom, to form the methyl-bearing triplet C6H6 intermediates [i41b] and [i81b], respectively, with the latter decomposing via a tight exit transition state to penta-1-yn-3,4-dienyl-1 [(H2CCCHCC(X2A)] plus the methyl radical [CH3(X2A2'')]. The successful unraveling of this methyl-loss channel - through collaborative experimental and computational efforts - underscores the viability of the photolytically generated dicarbon beam as an unprecedented tool to access reaction dynamics underlying the formation of resonantly stabilized free radicals (RSFR) that are vital to molecular mass growth processes that ultimately lead to polycyclic aromatic hydrocarbons (PAHs).

14.
J Phys Chem A ; 122(33): 6663-6672, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30032608

RESUMO

We investigated the 1-propynyl (CH3CC; X2A1) plus acetylene/acetylene- d2 (HCCH/DCCD; X1Σg+) under single-collision conditions using the crossed molecular beams method. The reaction was found to produce C5H4 plus atomic hydrogen (H) via an indirect reaction mechanism with a reaction energy of -123 ± 18 kJ mol-1. Using the DCCD isotopologue, we confirmed that the hydrogen atom is lost from the acetylene reactant. Our computational analysis suggests the reaction proceeds by the barrierless addition of the 1-propynyl radical to acetylene, resulting in C5H5 intermediate(s) that dissociate preferentially to methyldiacetylene (CH3CCCCH; X1A1) via hydrogen atom emission with a computed reaction energy of -123 ± 4 kJ mol-1. The barrierless nature of this reaction scheme suggests the 1-propynyl radical may be a key intermediate in hydrocarbon chain growth in cold molecular clouds like TMC-1, where methyl-substituted (poly)acetylenes are known to exist.

15.
J Phys Chem A ; 122(12): 3128-3139, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29529361

RESUMO

We explored the elementary reaction of atomic carbon (C; 3P j) with pyridine (C5H5N; X1A1) at a collision energy of 34 ± 4 kJ mol-1 utilizing the crossed molecular beams technique. Forward-convolution fitting of the data was combined with high-level electronic structure calculations and statistical (RRKM) calculations on the triplet C6H5N potential energy surface (PES). These investigations reveal that the reaction dynamics are indirect and dominated by large range reactive impact parameters leading via barrier-less addition to the nitrogen atom and to two chemically nonequivalent "aromatic" carbon-carbon bonds forming three distinct collision complexes. At least two reaction pathways through atomic hydrogen loss were identified on the triplet surface. These channels involve multiple isomerization steps of the initial collision complexes via ring-opening and ring expansion forming an acyclic 1-ethynyl-3-isocyanoallyl radical (P1; 2A″) and a hitherto unreported seven-membered 1-aza-2-dehydrocyclohepta-2,4,6-trien-4-yl radical isomer (P3; 2A), respectively. For RRKM calculations at zero collision energy, representing conditions in cold molecular clouds, the ring expansion product P3 is formed nearly exclusively for the atomic hydrogen loss channel, but based on these computations, the molecular fragmentation channel forming acetylene (C2H2) plus 3-cyano-2-propen-1-ylidene (P6; 3A″) accounts for nearly all of the degradation products of the reaction of atomic carbon with pyridine, proposing a destruction pathway of interstellar pyridine, which may account for the absence in the detection of pyridine in the interstellar medium. These results are also discussed in light of the isoelectronic carbon-benzene (C6H6; X1A1) system with important implications to the rapid degradation of nitrogen-bearing polycyclic aromatic hydrocarbons (NPAHs) in the interstellar medium compared to mass growth processes of PAH counterparts through ring expansion.

16.
Chemphyschem ; 18(15): 1971-1976, 2017 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-28556602

RESUMO

The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud.

17.
Angew Chem Int Ed Engl ; 56(44): 13655-13660, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-28887833

RESUMO

The 1,2,4,7-cyclooctatetraenyl radical (C8 H7 ) has been synthesized for the very first time via the bimolecular gas-phase reaction of ground-state carbon atoms with 1,3,5-cycloheptatriene (C7 H8 ) on the triplet surface under single-collision conditions. The barrier-less route to the cyclic 1,2,4,7-cyclooctatetraenyl radical accesses exotic reaction intermediates on the triplet surface, which cannot be synthesized via classical organic chemistry methods: the triplet non-aromatic 2,4,6-cyclooctatriene (C8 H8 ) and the triplet aromatic 1,3,5,7-cyclooctatetraene (C8 H8 ). Our approach provides a clean gas-phase synthesis of this hitherto elusive cyclic radical species 1,2,4,7-cyclooctatetraenyl via a single-collision event and opens up a versatile, unconventional path to access this previously largely obscure class of cyclooctatetraenyl radicals, which have been impossible to access through classical synthetic methods.

18.
J Phys Chem A ; 120(37): 7262-8, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27569541

RESUMO

We carried out crossed molecular beam experiments and electronic structure calculations to unravel the chemical dynamics of the reaction of the silylidyne(-d1) radical (SiH/SiD; X(2)Π) with dimethylacetylene (CH3CCCH3; X(1)A1g). The chemical dynamics were indirect and initiated by the barrierless addition of the silylidyne radical to both carbon atoms of dimethylacetylene forming a cyclic collision complex 2,3-dimethyl-1-silacyclopropenyl. This complex underwent unimolecular decomposition by atomic hydrogen loss from the silicon atom via a loose exit transition state to form the novel 2,3-dimethyl-1-silacycloprop-2-enylidene isomer in an overall exoergic reaction (experimentally: -29 ± 21 kJ mol(-1); computationally: -10 ± 8 kJ mol(-1)). An evaluation of the scattering dynamics of silylidyne with alkynes indicates that in each system, the silylidyne radical adds barrierlessly to one or to both carbon atoms of the acetylene moiety, yielding an acyclic or a cyclic collision complex, which can also be accessed via cyclization of the acyclic structures. The cyclic intermediate portrays the central decomposing complex, which fragments via hydrogen loss almost perpendicularly to the rotational plane of the decomposing complex exclusively from the silylidyne moiety via a loose exit transition state in overall weakly exoergic reaction leading to ((di)methyl-substituted) 1-silacycloprop-2-enylidenes (-1 to -13 kJ mol(-1) computationally; -12 ± 11 to -29 ± 21 kJ mol(-1) experimentally). Most strikingly, the reaction dynamics of the silylidyne radical with alkynes are very different from those of C1-C4 alkanes and C2-C4 alkenes, which do not react with the silylidyne radical at the collision energies under our crossed molecular beam apparatus, due to either excessive entrance barriers to reaction (alkanes) or overall highly endoergic reaction processes (alkenes). Nevertheless, molecules carrying carbon-carbon double bonds could react, if the carbon-carbon double bond is either consecutive like in allene (H2CCCH2) or in conjugation with another carbon-carbon double bond (conjugated dienes) as found, for instance, in 1,3-butadiene (H2CCHCHCH2).

19.
Angew Chem Int Ed Engl ; 55(28): 7983-7, 2016 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-27219669

RESUMO

Silole (1-silacyclopenta-2,4-diene) was synthesized for the first time by the bimolecular reaction of the simplest silicon-bearing radical, silylidyne (SiH), with 1,3-butadiene (C4 H6 ) in the gas phase under single-collision conditions. The absence of consecutive collisions of the primary reaction product prevents successive reactions of the silole by Diels-Alder dimerization, thus enabling the clean gas-phase synthesis of this hitherto elusive cyclic species from acyclic precursors in a single-collision event. Our method opens up a versatile and unconventional path to access a previously rather obscure class of organosilicon molecules (substituted siloles), which have been difficult to access through classical synthetic methods.

20.
Sci Adv ; 7(1)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523847

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are fundamental molecular building blocks of fullerenes and carbonaceous nanostructures in the interstellar medium and in combustion systems. However, an understanding of the formation of aromatic molecules carrying five-membered rings-the essential building block of nonplanar PAHs-is still in its infancy. Exploiting crossed molecular beam experiments augmented by electronic structure calculations and astrochemical modeling, we reveal an unusual pathway leading to the formation of indene (C9H8)-the prototype aromatic molecule with a five-membered ring-via a barrierless bimolecular reaction involving the simplest organic radical-methylidyne (CH)-and styrene (C6H5C2H3) through the hitherto elusive methylidyne addition-cyclization-aromatization (MACA) mechanism. Through extensive structural reorganization of the carbon backbone, the incorporation of a five-membered ring may eventually lead to three-dimensional PAHs such as corannulene (C20H10) along with fullerenes (C60, C70), thus offering a new concept on the low-temperature chemistry of carbon in our galaxy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA