Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Phys Chem Chem Phys ; 25(33): 21981-21992, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555236

RESUMO

Many diverse technological applications, such as soft robotics and flexible electronics, demand the development of intelligent sensors that can simultaneously detect different physical parameters. Taking advantage of plasmonic structures, which can experience minute variations in physical parameters upon close contact, herein, a dual channel based silver nanostructure of concentric square rings and disks on an SiO2 substrate is proposed for the synchronized detection of magnetic field (H) and temperature (T). The thermometric polydimethylsiloxane (PDMS) and ferromagnetic Fe3O4 were placed in two channels of the nanostructure, forming the sensor. The structure modeling and electromagnetic study were carried out using the finite element method (FEM). The simultaneous detection of H and T was realized through the sensing matrix, which solved the problem of cross-sensitivity caused by a variation in temperature. Furthermore, the impact of structural asymmetry on the performance of the sensor was studied by tuning its geometrical parameters, such as disk length and ring length, separately and together. Asymmetry and the channel size significantly enhanced the performance, where disk optimization increased the temperature and magnetic field sensitivity by about 760 and 8319 times using 70% and 80% asymmetric systems, respectively. Also, the smallest ΔW (5 nm) provided a sufficiently high channel separation factor of about 7.47 µm during multi-parameter sensing. In addition, asymmetric sensing toward a single parameter was tested by placing PDMS/Fe3O4 on both channels. Multiple peaks were displayed with high sensitivity and CH-factor, making the detection more specific. Thus, the system possessing a combination of narrow channels and unique channel asymmetry exhibited excellent multi- and single-sensing for the detection of temperature and magnetic field.

2.
Chimia (Aarau) ; 77(4): 246-249, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38047805

RESUMO

Transition metal-catalyzed reactions have attracted much attention in synthetic organic chemistry due to their important role in the formation of C-heteroatom bonds. Ullmann coupling has risen in prominence in recent decades owing to its utilization in the synthesis of biaryl ethers found in a wide range of natural products together with biologically essential molecules, including antibiotics and major industrial polymers. In this article we provide the current understanding of the theoretical aspects of the underlying mechanism of the Ullmann-type O-arylation reaction.

3.
Org Biomol Chem ; 20(22): 4539-4552, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35388388

RESUMO

The Suzuki-Miyaura coupling (SMC) represents a very efficacious method for constructing C-C bonds in organic synthesis. The ligand-free variants of SMC have been grabbing attention these days. Despite this momentousness, the mechanistic details of the ligand-free variants are scant in the literature. Herein, we have carried out a detailed mechanistic investigation into the ligand-free Cu-catalyzed SMC of unsaturated organic halides with aryl boronic acid with the aid of density functional theory (DFT) calculations employing the conductor-like polarizable continuum model (CPCM) method. The present study elucidates that in the absence of ancillary ligands on the metal, the substrates, base, and solvent molecules could act as pseudo-ancillary ligands to facilitate the cross-coupling reaction. The investigation further revealed that unsaturated halides like alkynyl halides/vinyl halides could act as good ancillary ligands for copper by forming a Cu-π intermediate and promoting a facile transmetalation process. However, regarding the oxidative addition and reductive elimination steps, a concerted pathway is observed contrary to Pd catalyzed Suzuki coupling, owing to the instability of Cu(III) species and the favourability of Csp2-Csp bond formation. In the whole set of mechanisms explored, oxidative addition/oxidative nucleophilic substitution was the rate-determining step in all the cases. A thermodynamically stable π-coordinated intermediate species where the substrate and base molecule are coordinated to the metal center is identified as the rate-determining species for the ligand-free Suzuki cross-coupling reaction. The presence of the aforesaid intermediate increases the energy span and consequently the activation barrier for the rate-determining step. This study unveiled a theoretical rationale for the high-temperature requirement in the ligand-free Cu-catalyzed SMC reaction.


Assuntos
Ácidos Borônicos , Cobre , Catálise , Cobre/química , Ligantes , Oxirredução
4.
J Phys Chem A ; 126(10): 1579-1590, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35258970

RESUMO

Singlet fission (SF) is proposed as a promising method to circumvent the Shockley-Queisser threshold of single junction photovoltaics. Progress towards realizing efficient SF-based devices has been impeded by the fact that only a handful of molecules and their derivatives practically exhibit efficient SF. In the present work, we demonstrate a TDDFT-based rapid and cost-effective computational approach for designing SF chromophores by doping various atomic sites (substituting carbon atoms) of polycyclic aromatic hydrocarbons with nitrogen, phosphorus, and silicon. We establish a hitherto unexplored, direct correlation between the atom-specific chemical reactivity parameter─Fukui function─of these molecules with their frontier molecular orbital energies, diradical characters, and vertical singlet and triplet excitation energies. These quantitative correlations show exactly opposite trends for nitrogen-doped molecules and phosphorus- or silicon-doped molecules. The doped derivatives that have the Fukui function falling in a range of 0.03-0.14 possess the required intermediate diradical character and suitable singlet-triplet energies to qualify for SF candidature. Our findings enable one, at reasonable computational times and cost, to easily assess the doping criteria and to develop design rules for SF molecules in particular and for diradicaloids in general.

5.
Entropy (Basel) ; 24(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36141143

RESUMO

Nitrogen oxides and chemi-ions are atmospheric pollutants with considerable aeronomic interest. These toxicants can react with each other, producing various ionic species and highly reactive by-products that play a crucial role in aerosol clustering and mediate several important atmospheric reactions. Understanding the chemical reactivity of these pollutants can provide essential information for controlling their excess emission into the atmosphere. Computational modeling and electronic structure studies help in predicting the structure, reactivity, and thermodynamics of transient atmospheric chemical species and can guide experimental research by providing vital mechanistic insights and data. In the present study, a computational investigation into the mechanisms of the binary associative reactions between negative ions: O2- and O3- with NO, NO2, and N2 was conducted using the Coupled-Cluster Singles and Doubles (CCSD) theory. Five model reactions between N2/NOx with On- (n = 2, 3) were considered in this work. Our calculations revealed that reactions (2) and (5) are two sequential processes involving intermediates, and all others occur in a concerted manner by direct transitions from the reactants to the products, with no isolable intermediates proceeding via single non-planar transition states. Our study revealed that the higher activation barrier required for the formation of NO3- (2) as compared to NO2- (1) could be the reason for the excess formation of NO2- ions over NO3- ions in the atmosphere. Further, all the investigated reactions except (5) are found to be feasible at room temperature. The energy required to break N-N bonds in the N2 molecule justifies the high barrier for (5). The results obtained from the study are in close agreement with the available experimental data. Moreover, the data from the study can be utilized for the evaluation of experiments and model predictions pertaining to NOx oxidation and molecular modeling of the gas-phase chemistry of pollutants/nucleation precursors formed in the Earth's atmosphere and aircraft engines.

6.
Analyst ; 145(15): 5333-5344, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32568330

RESUMO

Selected-ion recording (SIR) or multiple-reaction monitoring (MRM) protocols are widely employed for the quantification of targeted analytes by liquid chromatography-mass spectrometry (LC-MS). After chromatographic separation, analytes are desolvated and converted to gaseous ions usually by electrospray-ionization. The chromatographic peaks generated in this way are then integrated for quantification. It is generally assumed that the chromatographic peak intensities are dependent only on the selected MRM-transition protocols and the instrumental parameters set on the mass spectrometer. Using p-aminosalicylic acid (PAS) as a model compound, we demonstrate that the nature of the LC mobile phase exerts a significant effect on the chromatographic peak intensities. Under identical mass spectrometric conditions, chromatographic peak intensities recorded with methanol as the mobile phase were drastically different from those acquired using acetonitrile as the eluent. In fact, the product-ion mass spectra recorded with protonated PAS under different solvent conditions were qualitatively different. The observed differences were attributed to the existence of different protomers of PAS in the gas phase in dissimilar ratios under different solvent-spray conditions. Results from ion-mobility mass spectrometry experiments confirmed this hypothesis. For example, when PAS was sprayed from an acetonitrile solution, the arrival-time profile recorded from the mass-selected m/z 154 ion for protonated PAS showed essentially one arrival-time peak for the N-protonated tautomer. In contrast, the profile recorded from a methanolic PAS solution showed a different arrival-time peak for a more mobile protomer, which was recognized as the carbonyl-protonated PAS. The coexistence of protomers in different and variable ratios in an ensemble of ions generated by electrospray ionization of a single pure compound wields strong ramifications on the identification and quantification of analytes by LC-MS. However, the inclusion of an ion-mobility separator before the mass-selected ions are fragmented and detected by mass spectrometry ameliorates the complications rendered by the coexistence of different protomers and deprotomers.

7.
J Phys Chem A ; 122(1): 328-340, 2018 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-29111741

RESUMO

A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF4-), chloride (Cl-), and bromide (Br-) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔEint), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (µ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔEint, theoretical band gap and chemical activity descriptors was evaluated. The ΔEint values were negative for all six ion pairs and were highest for Cl- containing ion pairs. The theoretical band gap value after -CH3 substitution increased from 3.78 to 3.96 eV (for Cl-) and from 2.74 to 2.88 eV (for Br-) and decreased from 4.9 to 4.89 eV (for BF4-). Ion pairs of BF4- were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH3 substitution. The change in η and µ values due to the -CH3 substituent is negligibly small in all cases except for the ion pairs of Cl-. Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong Hcat···Xani and Ccat···Xani interactions in ion pairs of Cl- and Br- whereas a weak van der Waal's effect dominated in ion pairs of BF4-. The molecular electrostatic potential (MESP)-based parameter ΔΔVmin measuring the anion-cation interaction strength showed a good linear correlation with ΔEint for all 1-butylpyridinium ion pairs (R2 = 0.9918). The ionic crystal density values calculated by using DFT-based MESP showed only slight variations from experimentally reported values.

8.
J Phys Chem A ; 117(51): 13976-87, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24299203

RESUMO

We show computational evidence that ground-state moderately strong hydroxyarenes (Ar-OH, pKa ∼ 0) dissociate by forming an ion-pair intermediate that lives for 3-5 ps. The concentration of this intermediate is approximately 2 times smaller than that of the un-ionized acid at pH ∼ 0.6 and is characterized by average C-O bond lengths (1.30 Å) that are intermediate between those of un-ionized (1.29 Å) and fully dissociated (1.34 Å) species. During the lifetime of the ion-pair intermediate the excess proton fluctuates between the oxygen atom of the phenolic moiety and those of water molecules in the first and second solvation shells on a subpicosecond time scale (∼100-300 fs).


Assuntos
Oxigênio/química , Fenóis/química , Prótons , Água/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Simulação de Dinâmica Molecular , Temperatura
9.
J Chem Phys ; 134(9): 094505, 2011 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-21384983

RESUMO

We investigate the role played by the coordination state of pre-existing water wires during the dissociation of moderately strong acids by means of first-principles molecular dynamics calculations. By preparing 2,4,6-tricyanophenol (calc. pKa∼0.5) in two different initial states, we are able to observe sequential as well as concerted trajectories of dissociation: On one hand, equilibrium dissociation takes place on a ∼50 ps timescale; proton conduction occurs through three-coordinated water wires in this case, by means of sequential Grotthus hopping. On the other hand, by preparing 2,4,6-tricyanophenol in a hydration state inherited from that of equilibrated phenol (calc. pKa=7.6), the moderately strong acid finds itself in a presolvated state from which dissociation can take place on a ∼1 ps timescale. In this case, concerted dissociation trajectories are observed, which consist of proton translocation through two intervening, four-coordinated, water molecules in 0.1-1.0 ps. The present results suggest that, in general, the mechanism of proton translocation depends on how the excess proton is injected into a hydrogen bond network. In particular, if the initial conditions favour proton release to a fourfold H-bonded water molecule, proton translocation by as much as 6-8 Šcan take place on a sub-picosecond timescale.


Assuntos
Ácidos/química , Simulação de Dinâmica Molecular , Ligação de Hidrogênio , Estrutura Molecular , Teoria Quântica , Água/química
10.
J Chem Phys ; 133(4): 044108, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20687634

RESUMO

Ultrafast, time-resolved investigations of acid-base neutralization reactions have recently been performed using systems containing the photoacid 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS) and various Bronsted bases. Two conflicting neutralization mechanisms have been formulated by Mohammed et al. [Science 310, 83 (2005)] and Siwick et al. [J. Am. Chem. Soc. 129, 13412 (2007)] for the same acid-base system. Herein an ab initio molecular dynamics based computational model is formulated, which is able to investigate the validity of the proposed mechanisms in the general context of ground-state acid-base neutralization reactions. Our approach consists of using 2,4,6-tricyanophenol (exp. pKa congruent with 1) as a model for excited-state HPTS( *) (pKa congruent with 1.4) and carboxylate ions for the accepting base. We employ our recently proposed dipole-field/quantum mechanics (QM) treatment [P. Maurer and R. Iftimie, J. Chem. Phys. 132, 074112 (2010)] of the proton donor and acceptor molecules. This approach allows one to tune the free energy of neutralization to any desired value as well as model initial nonequilibrium hydration effects caused by a sudden increase in acidity, making it possible to achieve a more realistic comparison with experimental data than could be obtained via a full-QM treatment of the entire system. It is demonstrated that the dipole-field/QM model reproduces correctly key properties of the 2,4,6-tricyanophenol acid molecule including gas-phase proton dissociation energies and dipole moments, and condensed-phase hydration structure and pKa values.


Assuntos
Equilíbrio Ácido-Base , Sulfonatos de Arila/química , Modelos Químicos , Simulação de Dinâmica Molecular , Ânions/química , Ácidos Carboxílicos/química , Corantes/química , Gases , Fenóis/química , Prótons , Teoria Quântica , Termodinâmica , Fatores de Tempo , Água/química
11.
J Phys Chem B ; 113(13): 4152-60, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19425221

RESUMO

Cryogenic conditions favor the formation of ion-pair dissociation intermediates in amorphous mixtures of HF and H(2)O, making possible their characterization by means of infrared spectroscopy. The experimental infrared spectra show a structurally rich "continuous" absorption ranging from 1000 to 3400 cm(-1), which, in principle, contains important information regarding the microscopic structure of the aforementioned dissociation intermediates. Herein, we demonstrate that this microscopic information can be extracted by comparing and contrasting experimental spectra with those obtained by means of carefully designed first-principles molecular dynamics calculations. Very good, systematic agreement between theoretical and experimental spectra can be obtained for HF/H(2)O mixtures of various compositions, revealing the presence of proton-shared, dissociation intermediates F(delta-) * * * H * * * (delta+)OH(2). The existence of similar proton-shared, hydrogen-bonded intermediates of ionization, that are stable in solution, but not in the gas phase, has been previously suggested by other groups, using, among other techniques, low temperature NMR data and aprotic, dipolar, solvents. Our investigation reveals that similar structures are also stable in aqueous solutions of HF. We discuss some of the implications of the present findings as far as the mechanism of dissociation of weak acids is concerned.


Assuntos
Ácidos/química , Prótons , Água/química , Simulação por Computador , Ligação de Hidrogênio , Íons/química , Solubilidade , Espectrofotometria Infravermelho
12.
J Am Chem Soc ; 130(18): 5901-7, 2008 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-18386892

RESUMO

The existence of a broad, mid-infrared absorption ranging from 1000 to 3000 cm(-1) is usually interpreted as a signature for the existence of protonated water networks. Herein, we use cryogenic mixtures of water and hydrogen fluoride (HF) and show experimental and computational evidence that similarly wide absorptions can be generated by a broad distribution of proton-shared and ion pair complexes. In the present case, we demonstrate that the broadening is mainly inhomogeneous, reflecting the fact that the topology of the first solvation shell determines the local degree of ionization and the shared-proton asymmetric stretching frequency within H2O x HF complexes. The extreme sensitivity of the proton transfer potential energy hypersurface to local hydrogen bonding topologies modulates its vibrational frequency from 2800 down to approximately 1300 cm(-1), the latter value being characteristic of solvation geometries that yield similar condensed-phase proton affinities for H2O and fluoride. By linking the local degree of ionization to the solvation pattern, we are able to propose a mechanism of ionization for HF in aqueous solutions and to explain some of their unusual properties at large concentrations. However, an important conclusion of broad scientific interest is our prediction that spectral signatures that are normally attributed to protonated water networks could also reveal the presence of strong hydrogen bonds between un-ionized acids and water molecules, with important consequences to spectroscopic investigations of biologically relevant proton channels and pumps.


Assuntos
Ácido Fluorídrico/química , Espectrofotometria Infravermelho/métodos , Água/química , Ligação de Hidrogênio , Prótons
13.
J Phys Chem Lett ; 5(18): 3200-5, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26276332

RESUMO

We use ab initio molecular dynamics to study proton transfer in a donor-bridge-acceptor system in which the bridge is a single water molecule and the entire system is embedded in aqueous solution. The results, based on a large number of proton transfer trajectories, demonstrate that the dominant charge-transfer pathway is a subpicosecond "through bridge" event in which the bridge adopts an Eigen-like (hydronium) structure. We also identify another state in which the bridge forms a Zundel-like configuration with the acceptor that appears to be a dead end for the charge transfer. The reaction coordinate is inherently multidimensional and, as we demonstrate, cannot be given in terms of either local structural parameters of the donor-bridge-acceptor system or local solvent coordination numbers.

14.
J Phys Chem Lett ; 3(18): 2633-7, 2012 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-26295883

RESUMO

The proton transfer mechanisms involved inside aqueous, solvent-separated encounter complexes between phenol and carboxyl moieties are studied using ab initio molecular dynamics and computational time-resolved vibrational spectroscopy. This model framework can be viewed as a ground-state analog of the excited-state proton transfer reactions that have been actively investigated using ultrafast spectroscopy. Three qualitatively distinct proton transfer pathways are observed in the simulations. These can be described as direct concerted, direct sequential, and through bulk transfers. The primary difference between the sequential and concerted mechanism is the involvement of a reaction intermediate in which the proton fluctuates for several picoseconds through the hydrogen bonds connecting donor and acceptor but resides primarily on an intervening water molecule in the encounter complex. These results contribute to our molecular level understanding of the diverse processes involved in proton transfer within water-separated encounter complexes.

15.
J Phys Chem B ; 114(24): 8147-55, 2010 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-20518536

RESUMO

Acid ionization and dissociation are phenomena that play a fundamental role in chemistry and biology, but their microscopic details are largely unknown. We use ab initio molecular dynamics to identify and characterize various structures that are formed along the pathway of dissociation of trifluoroacetic acid (pK(a) = 0.5). The present results demonstrate that solutions of moderately strong (-1

Assuntos
Simulação de Dinâmica Molecular , Prótons , Ácido Trifluoracético/química , Concentração de Íons de Hidrogênio , Espectrofotometria Infravermelho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA