Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Genomics ; 17: 442, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27277198

RESUMO

BACKGROUND: Resistance to taxane-based therapy in breast cancer patients is a major clinical problem that may be addressed through insight of the genomic alterations leading to taxane resistance in breast cancer cells. In the current study we used whole exome sequencing to discover somatic genomic alterations, evolving across evolutionary stages during the acquisition of docetaxel resistance in breast cancer cell lines. RESULTS: Two human breast cancer in vitro models (MCF-7 and MDA-MB-231) of the step-wise acquisition of docetaxel resistance were developed by exposing cells to 18 gradually increasing concentrations of docetaxel. Whole exome sequencing performed at five successive stages during this process was used to identify single point mutational events, insertions/deletions and copy number alterations associated with the acquisition of docetaxel resistance. Acquired coding variation undergoing positive selection and harboring characteristics likely to be functional were further prioritized using network-based approaches. A number of genomic changes were found to be undergoing evolutionary selection, some of which were likely to be functional. Of the five stages of progression toward resistance, most resistance relevant genomic variation appeared to arise midway towards fully resistant cells corresponding to passage 31 (5 nM docetaxel) for MDA-MB-231 and passage 16 (1.2 nM docetaxel) for MCF-7, and where the cells also exhibited a period of reduced growth rate or arrest, respectively. MCF-7 cell acquired several copy number gains on chromosome 7, including ABC transporter genes, including ABCB1 and ABCB4, as well as DMTF1, CLDN12, CROT, and SRI. For MDA-MB-231 numerous copy number losses on chromosome X involving more than 30 genes was observed. Of these genes, CASK, POLA1, PRDX4, MED14 and PIGA were highly prioritized by the applied network-based gene ranking approach. At higher docetaxel concentration MCF-7 subclones exhibited a copy number loss in E2F4, and the gene encoding this important transcription factor was down-regulated in MCF-7 resistant cells. CONCLUSIONS: Our study of the evolution of acquired docetaxel resistance identified several genomic changes that might explain development of docetaxel resistance. Interestingly, the most relevant resistance-associated changes appeared to originate midway through the evolution towards fully resistant cell lines. Our data suggest that no single genomic event sufficiently predicts resistance to docetaxel, but require genomic alterations affecting multiple pathways that in concert establish the final resistance stage.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Evolução Molecular , Exoma , Taxoides/farmacologia , Biomarcadores Tumorais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Docetaxel , Feminino , Perfilação da Expressão Gênica , Variação Genética , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fluxo de Trabalho
2.
Tumour Biol ; 36(6): 4327-38, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25596703

RESUMO

The microtubule-targeting taxanes are important in breast cancer therapy, but no predictive biomarkers have yet been identified with sufficient scientific evidence to allow clinical routine use. The purposes of the present study were to develop a cell-culture-based discovery platform for docetaxel resistance and thereby identify key molecular mechanisms and predictive molecular characteristics to docetaxel resistance. Two docetaxel-resistant cell lines, MCF7RES and MDARES, were generated from their respective parental cell lines MCF-7 and MDA-MB-231 by stepwise selection in docetaxel dose increments over 15 months. The cell lines were characterized regarding sensitivity to docetaxel and other chemotherapeutics and subjected to transcriptome-wide mRNA microarray profiling. MCF7RES and MDARES exhibited a biphasic growth inhibition pattern at increasing docetaxel concentrations. Gene expression analysis singled out ABCB1, which encodes permeability glycoprotein (Pgp), as the top upregulated gene in both MCF7RES and MDARES. Functional validation revealed Pgp as a key resistance mediator at low docetaxel concentrations (first-phase response), whereas additional resistance mechanisms appeared to be prominent at higher docetaxel concentrations (second-phase response). Additional resistance mechanisms were indicated by gene expression profiling, including genes in the interferon-inducible protein family in MCF7RES and cancer testis antigen family in MDARES. Also, upregulated expression of various ABC transporters, ECM-associated proteins, and lysosomal proteins was identified in both resistant cell lines. Finally, MCF7RES and MDARES presented with cross-resistance to epirubicin, but only MDARES showed cross-resistance to oxaliplatin. In conclusion, Pgp was identified as a key mediator of resistance to low docetaxel concentrations with other resistance mechanisms prominent at higher docetaxel concentrations. Supporting Pgp upregulation as one major mechanism of taxane resistance and cell-line-specific alterations as another, both MCF7RES and MDARES were cross-resistant to epirubicin (Pgp substrate), but only MDARES was cross-resistant to oxaliplatin (non-Pgp substrate).


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Taxoides/administração & dosagem , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/biossíntese , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Permeabilidade da Membrana Celular/genética , Docetaxel , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicoproteínas/biossíntese , Glicoproteínas/genética , Humanos , Células MCF-7 , Análise em Microsséries , Proteínas de Neoplasias/biossíntese , Transdução de Sinais/efeitos dos fármacos
3.
Cancers (Basel) ; 13(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073301

RESUMO

BACKGROUND: This pre-clinical study was designed to refine a dissection method for validating the use of a 15-gene hypoxia classifier, which was previously established for head and neck squamous cell carcinoma (HNSCC) patients, to identify hypoxia in prostate cancer. METHODS: PC3 and DU-145 adenocarcinoma cells, in vitro, were gassed with various oxygen concentrations (0-21%) for 24 h, followed by real-time PCR. Xenografts were established in vivo, and the mice were injected with the hypoxic markers [18F]-FAZA and pimonidazole. Subsequently, tumors were excised, frozen, cryo-sectioned, and analyzed using autoradiography ([18F]-FAZA) and immunohistochemistry (pimonidazole); the autoradiograms used as templates for laser capture microdissection of hypoxic and non-hypoxic areas, which were lysed, and real-time PCR was performed. RESULTS: In vitro, all 15 genes were increasingly up-regulated as oxygen concentrations decreased. With the xenografts, all 15 genes were up-regulated in the hypoxic compared to non-hypoxic areas for both cell lines, although this effect was greater in the DU-145. CONCLUSIONS: We have developed a combined autoradiographic/laser-guided microdissection method with broad applicability. Using this approach on fresh frozen tumor material, thereby minimizing the degree of RNA degradation, we showed that the 15-gene hypoxia gene classifier developed in HNSCC may be applicable for adenocarcinomas such as prostate cancer.

4.
Sci Rep ; 7(1): 11702, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916750

RESUMO

Genetic alterations identified in adjacent normal appearing tissue in bladder cancer patients are indicative of a field disease. Here we assessed normal urothelium transformation and intra-tumour heterogeneity (ITH) in four patients with bladder cancer. Exome sequencing identified private acquired mutations in a lymph node metastasis and local recurrences. Deep re-sequencing revealed presence of at least three and four subclones in two patients with multifocal disease, while no demarcation of subclones was identified in the two patients with unifocal disease. Analysis of adjacent normal urothelium showed low frequency mutations in patients with multifocal disease. Expression profiling showed intra-tumour and intra-patient co-existence of basal- and luminal-like tumour regions, and patients with multifocal disease had a greater degree of genomic and transcriptomic ITH, as well as transformation of adjacent normal cells, compared to patients with unifocal disease. Analysis of the adjacent urothelium may pave the way for therapies targeting the field disease.


Assuntos
Variação Genética , Neoplasias da Bexiga Urinária/genética , Movimento Celular , Células Clonais/patologia , Análise por Conglomerados , Heterogeneidade Genética , Humanos , Metástase Linfática , Mutação , Taxa de Mutação , Análise de Sequência de DNA , Neoplasias da Bexiga Urinária/cirurgia
5.
Cancer Res ; 76(19): 5894-5906, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27488526

RESUMO

Greater knowledge concerning tumor heterogeneity and clonality is needed to determine the impact of targeted treatment in the setting of bladder cancer. In this study, we performed whole-exome, transcriptome, and deep-focused sequencing of metachronous tumors from 29 patients initially diagnosed with early-stage bladder tumors (14 with nonprogressive disease and 15 with progressive disease). Tumors from patients with progressive disease showed a higher variance of the intrapatient mutational spectrum and a higher frequency of APOBEC-related mutations. Allele-specific expression was also higher in these patients, particularly in tumor suppressor genes. Phylogenetic analysis revealed a common origin of the metachronous tumors, with a higher proportion of clonal mutations in the ancestral branch; however, 19 potential therapeutic targets were identified as both ancestral and tumor-specific alterations. Few subclones were present based on PyClone analysis. Our results illuminate tumor evolution and identify candidate therapeutic targets in bladder cancer. Cancer Res; 76(19); 5894-906. ©2016 AACR.


Assuntos
Evolução Clonal , Exoma , Neoplasias da Bexiga Urinária/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Citidina Desaminase/genética , Humanos , Pessoa de Meia-Idade , Antígenos de Histocompatibilidade Menor/genética , Mutação , Filogenia , Proteínas/genética , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Análise de Sequência de DNA , Análise de Sequência de RNA , Transcriptoma , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/terapia
6.
Cancer Cell ; 30(1): 27-42, 2016 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-27321955

RESUMO

Non-muscle-invasive bladder cancer (NMIBC) is a heterogeneous disease with widely different outcomes. We performed a comprehensive transcriptional analysis of 460 early-stage urothelial carcinomas and showed that NMIBC can be subgrouped into three major classes with basal- and luminal-like characteristics and different clinical outcomes. Large differences in biological processes such as the cell cycle, epithelial-mesenchymal transition, and differentiation were observed. Analysis of transcript variants revealed frequent mutations in genes encoding proteins involved in chromatin organization and cytoskeletal functions. Furthermore, mutations in well-known cancer driver genes (e.g., TP53 and ERBB2) were primarily found in high-risk tumors, together with APOBEC-related mutational signatures. The identification of subclasses in NMIBC may offer better prognostication and treatment selection based on subclass assignment.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica/métodos , Mutação , Análise de Sequência de RNA/métodos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Desaminases APOBEC/genética , Análise por Conglomerados , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Estadiamento de Neoplasias , RNA Longo não Codificante/genética , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA