Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Virol ; 96(7): e29752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949191

RESUMO

Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.


Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mitocôndrias/metabolismo , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Células A549 , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Transcriptoma , Fases de Leitura Aberta , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Viroporinas
2.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38892306

RESUMO

The development of specific antiviral therapies targeting SARS-CoV-2 remains fundamental because of the continued high incidence of COVID-19 and limited accessibility to antivirals in some countries. In this context, dark chemical matter (DCM), a set of drug-like compounds with outstanding selectivity profiles that have never shown bioactivity despite being extensively assayed, appears to be an excellent starting point for drug development. Accordingly, in this study, we performed a high-throughput screening to identify inhibitors of the SARS-CoV-2 main protease (Mpro) using DCM compounds as ligands. Multiple receptors and two different docking scoring functions were employed to identify the best molecular docking poses. The selected structures were subjected to extensive conventional and Gaussian accelerated molecular dynamics. From the results, four compounds with the best molecular behavior and binding energy were selected for experimental testing, one of which presented inhibitory activity with a Ki value of 48 ± 5 µM. Through virtual screening, we identified a significant starting point for drug development, shedding new light on DCM compounds.


Assuntos
Antivirais , Proteases 3C de Coronavírus , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Proteases 3C de Coronavírus/metabolismo , Antivirais/farmacologia , Antivirais/química , Humanos , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , COVID-19/virologia , Descoberta de Drogas/métodos , Ensaios de Triagem em Larga Escala/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Ligação Proteica , Ligantes
3.
BMC Med ; 20(1): 129, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351135

RESUMO

BACKGROUND: SARS-CoV-2 infection portends a broad range of outcomes, from a majority of asymptomatic cases to a lethal disease. Robust correlates of severe COVID-19 include old age, male sex, poverty, and co-morbidities such as obesity, diabetes, and cardiovascular disease. A precise knowledge of the molecular and biological mechanisms that may explain the association of severe disease with male sex is still lacking. Here, we analyzed the relationship of serum testosterone levels and the immune cell skewing with disease severity in male COVID-19 patients. METHODS: Biochemical and hematological parameters of admission samples in 497 hospitalized male and female COVID-19 patients, analyzed for associations with outcome and sex. Longitudinal (in-hospital course) analyses of a subcohort of 114 male patients were analyzed for associations with outcome. Longitudinal analyses of immune populations by flow cytometry in 24 male patients were studied for associations with outcome. RESULTS: We have found quantitative differences in biochemical predictors of disease outcome in male vs. female patients. Longitudinal analyses in a subcohort of male COVID-19 patients identified serum testosterone trajectories as the strongest predictor of survival (AUC of ROC = 92.8%, p < 0.0001) in these patients among all biochemical parameters studied, including single-point admission serum testosterone values. In lethal cases, longitudinal determinations of serum luteinizing hormone (LH) and androstenedione levels did not follow physiological feedback patterns. Failure to reinstate physiological testosterone levels was associated with evidence of impaired T helper differentiation and augmented circulating classical monocytes. CONCLUSIONS: Recovery or failure to reinstate testosterone levels is strongly associated with survival or death, respectively, from COVID-19 in male patients. Our data suggest an early inhibition of the central LH-androgen biosynthesis axis in a majority of patients, followed by full recovery in survivors or a peripheral failure in lethal cases. These observations are suggestive of a significant role of testosterone status in the immune responses to COVID-19 and warrant future experimental explorations of mechanistic relationships between testosterone status and SARS-CoV-2 infection outcomes, with potential prophylactic or therapeutic implications.


Assuntos
COVID-19 , Androgênios , Feminino , Humanos , Hormônio Luteinizante/metabolismo , Masculino , SARS-CoV-2 , Testosterona
4.
J Chem Inf Model ; 61(12): 6094-6106, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34806382

RESUMO

SARS-CoV-2 is a type of coronavirus responsible for the international outbreak of respiratory illness termed COVID-19 that forced the World Health Organization to declare a pandemic infectious disease situation of international concern at the beginning of 2020. The need for a swift response against COVID-19 prompted to consider different sources to identify bioactive compounds that can be used as therapeutic agents, including available drugs and natural products. Accordingly, this work reports the results of a virtual screening process aimed at identifying antiviral natural product inhibitors of the SARS-CoV-2 Mpro viral protease. For this purpose, ca. 2000 compounds of the Selleck database of Natural Compounds were the subject of an ensemble docking process targeting the Mpro protease. Molecules that showed binding to most of the protein conformations were retained for a further step that involved the computation of the binding free energy of the ligand-Mpro complex along a molecular dynamics trajectory. The compounds that showed a smooth binding free energy behavior were selected for in vitro testing. From the resulting set of compounds, five compounds exhibited an antiviral profile, and they are disclosed in the present work.


Assuntos
Produtos Biológicos , COVID-19 , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2
5.
Br J Haematol ; 190(4): 520-524, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32531085

RESUMO

Coronavirus disease 2019 (COVID-19) is frequently associated with severe systemic consequences, including vasculitis, a hyperinflammatory state and hypercoagulation. The mechanisms leading to these life-threatening abnormalities are multifactorial. Based on the analysis of publicly available interactomes, we propose that severe acute respiratory syndrome coronavirus-2 infection directly causes a deficiency in C1 esterase inhibitor, a pathogen-specific mechanism that may help explain significant systemic abnormalities in patients with COVID-19.


Assuntos
COVID-19/metabolismo , Proteína Inibidora do Complemento C1/metabolismo , SARS-CoV-2/metabolismo , COVID-19/patologia , Humanos
6.
PLoS Comput Biol ; 14(1): e1005914, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293497

RESUMO

Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate. Model-driven analysis and experimental validations unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism. While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochondria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects. The potential therapeutic significance of our model was supported by a differential sensitivity of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the mitochondria.


Assuntos
Ácidos Graxos/metabolismo , Neoplasias da Próstata/metabolismo , Ácido Araquidônico/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/metabolismo , Transição Epitelial-Mesenquimal , Compostos de Epóxi/farmacologia , Ácidos Graxos/química , Humanos , Masculino , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Transcriptoma
7.
Mol Syst Biol ; 13(10): 940, 2017 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-28978620

RESUMO

Cyclin-dependent kinases (CDK) are rational cancer therapeutic targets fraught with the development of acquired resistance by tumor cells. Through metabolic and transcriptomic analyses, we show that the inhibition of CDK4/6 leads to a metabolic reprogramming associated with gene networks orchestrated by the MYC transcription factor. Upon inhibition of CDK4/6, an accumulation of MYC protein ensues which explains an increased glutamine metabolism, activation of the mTOR pathway and blunting of HIF-1α-mediated responses to hypoxia. These MYC-driven adaptations to CDK4/6 inhibition render cancer cells highly sensitive to inhibitors of MYC, glutaminase or mTOR and to hypoxia, demonstrating that metabolic adaptations to antiproliferative drugs unveil new vulnerabilities that can be exploited to overcome acquired drug tolerance and resistance by cancer cells.


Assuntos
Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Neoplasias/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Piridinas/farmacologia , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Glutamina/metabolismo , Células HCT116 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células MCF-7 , Neoplasias/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Mol Cell ; 38(5): 733-45, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20542005

RESUMO

The proteasome recognizes its substrates via a diverse set of ubiquitin receptors, including subunits Rpn10/S5a and Rpn13. In addition, shuttling factors, such as Rad23, recruit substrates to the proteasome by delivering ubiquitinated proteins. Despite the increasing understanding of the factors involved in this process, the regulation of substrate delivery remains largely unexplored. Here we report that Rpn10 is monoubiquitinated in vivo and that this modification has profound effects on proteasome function. Monoubiquitination regulates the capacity of Rpn10 to interact with substrates by inhibiting Rpn10's ubiquitin-interacting motif (UIM). We show that Rsp5, a member of NEDD4 ubiquitin-protein ligase family, and Ubp2, a deubiquitinating enzyme, control the levels of Rpn10 monoubiquitination in vivo. Notably, monoubiquitination of Rpn10 is decreased under stress conditions, suggesting a mechanism of control of receptor availability mediated by the Rsp5-Ubp2 system. Our results reveal an unanticipated link between monoubiquitination signal and regulation of proteasome function.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Endopeptidases/genética , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Lisina/metabolismo , Ubiquitina-Proteína Ligases Nedd4 , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Ubiquitina/genética , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
9.
Stem Cells ; 34(5): 1163-76, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27146024

RESUMO

In solid tumors, cancer stem cells (CSCs) can arise independently of epithelial-mesenchymal transition (EMT). In spite of recent efforts, the metabolic reprogramming associated with CSC phenotypes uncoupled from EMT is poorly understood. Here, by using metabolomic and fluxomic approaches, we identify major metabolic profiles that differentiate metastatic prostate epithelial CSCs (e-CSCs) from non-CSCs expressing a stable EMT. We have found that the e-CSC program in our cellular model is characterized by a high plasticity in energy substrate metabolism, including an enhanced Warburg effect, a greater carbon and energy source flexibility driven by fatty acids and amino acid metabolism and an essential reliance on the proton buffering capacity conferred by glutamine metabolism. An analysis of transcriptomic data yielded a metabolic gene signature for our e-CSCs consistent with the metabolomics and fluxomics analyses that correlated with tumor progression and metastasis in prostate cancer and in 11 additional cancer types. Interestingly, an integrated metabolomics, fluxomics, and transcriptomics analysis allowed us to identify key metabolic players regulated at the post-transcriptional level, suggesting potential biomarkers and therapeutic targets to effectively forestall metastasis. Stem Cells 2016;34:1163-1176.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal , Metabolômica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Aminoácidos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Progressão da Doença , Células Epiteliais/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/genética , Ácidos Graxos/biossíntese , Perfilação da Expressão Gênica , Genes Neoplásicos , Glucose/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Concentração de Íons de Hidrogênio , Mesoderma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADP/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Complexo Piruvato Desidrogenase/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Transcrição Gênica/efeitos dos fármacos
10.
J Biol Chem ; 288(5): 2941-50, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23233665

RESUMO

DNA polymerase δ consists of four subunits, one of which, p12, is degraded in response to DNA damage through the ubiquitin-proteasome pathway. However, the identities of the ubiquitin ligase(s) that are responsible for the proximal biochemical events in triggering proteasomal degradation of p12 are unknown. We employed a classical approach to identifying a ubiquitin ligase that is involved in p12 degradation. Using UbcH5c as ubiquitin-conjugating enzyme, a ubiquitin ligase activity that polyubiquitinates p12 was purified from HeLa cells. Proteomic analysis revealed that RNF8, a RING finger ubiquitin ligase that plays an important role in the DNA damage response, was the only ubiquitin ligase present in the purified preparation. In vivo, DNA damage-induced p12 degradation was significantly reduced by shRNA knockdown of RNF8 in cultured human cells and in RNF8(-/-) mouse epithelial cells. These studies provide the first identification of a ubiquitin ligase activity that is involved in the DNA damage-induced destruction of p12. The identification of RNF8 allows new insights into the integration of the control of p12 degradation by different DNA damage signaling pathways.


Assuntos
Dano ao DNA , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas de Ligação a DNA/isolamento & purificação , Meia-Vida , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Poliubiquitina/metabolismo , Transporte Proteico/efeitos da radiação , Proteólise/efeitos da radiação , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/isolamento & purificação , Ubiquitinação/efeitos da radiação , Raios Ultravioleta
11.
Mol Cancer ; 13: 74, 2014 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-24684754

RESUMO

BACKGROUND: PTOV1 is an adaptor protein with functions in diverse processes, including gene transcription and protein translation, whose overexpression is associated with a higher proliferation index and tumor grade in prostate cancer (PC) and other neoplasms. Here we report its interaction with the Notch pathway and its involvement in PC progression. METHODS: Stable PTOV1 knockdown or overexpression were performed by lentiviral transduction. Protein interactions were analyzed by co-immunoprecipitation, pull-down and/or immunofluorescence. Endogenous gene expression was analyzed by real time RT-PCR and/or Western blotting. Exogenous promoter activities were studied by luciferase assays. Gene promoter interactions were analyzed by chromatin immunoprecipitation assays (ChIP). In vivo studies were performed in the Drosophila melanogaster wing, the SCID-Beige mouse model, and human prostate cancer tissues and metastasis. The Excel package was used for statistical analysis. RESULTS: Knockdown of PTOV1 in prostate epithelial cells and HaCaT skin keratinocytes caused the upregulation, and overexpression of PTOV1 the downregulation, of the Notch target genes HEY1 and HES1, suggesting that PTOV1 counteracts Notch signaling. Under conditions of inactive Notch signaling, endogenous PTOV1 associated with the HEY1 and HES1 promoters, together with components of the Notch repressor complex. Conversely, expression of active Notch1 provoked the dismissal of PTOV1 from these promoters. The antagonist role of PTOV1 on Notch activity was corroborated in the Drosophila melanogaster wing, where human PTOV1 exacerbated Notch deletion mutant phenotypes and suppressed the effects of constitutively active Notch. PTOV1 was required for optimal in vitro invasiveness and anchorage-independent growth of PC-3 cells, activities counteracted by Notch, and for their efficient growth and metastatic spread in vivo. In prostate tumors, the overexpression of PTOV1 was associated with decreased expression of HEY1 and HES1, and this correlation was significant in metastatic lesions. CONCLUSIONS: High levels of the adaptor protein PTOV1 counteract the transcriptional activity of Notch. Our evidences link the pro-oncogenic and pro-metastatic effects of PTOV1 in prostate cancer to its inhibitory activity on Notch signaling and are supportive of a tumor suppressor role of Notch in prostate cancer progression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/biossíntese , Proteínas de Homeodomínio/biossíntese , Proteínas de Neoplasias/genética , Neoplasias da Próstata/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Drosophila melanogaster , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Metástase Neoplásica , Proteínas de Neoplasias/metabolismo , Neoplasias da Próstata/patologia , Receptores Notch/biossíntese , Transdução de Sinais/genética , Fatores de Transcrição HES-1 , Ativação Transcricional/genética
12.
Mol Cancer ; 13: 237, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25331979

RESUMO

BACKGROUND: Tumor cell subpopulations can either compete with each other for nutrients and physical space within the tumor niche, or co-operate for enhanced survival, or replicative or metastatic capacities. Recently, we have described co-operative interactions between two clonal subpopulations derived from the PC-3 prostate cancer cell line, in which the invasiveness of a cancer stem cell (CSC)-enriched subpopulation (PC-3M, or M) is enhanced by a non-CSC subpopulation (PC-3S, or S), resulting in their accelerated metastatic dissemination. METHODS: M and S secretomes were compared by SILAC (Stable Isotope Labeling by Aminoacids in Cell Culture). Invasive potential in vitro of M cells was analyzed by Transwell-Matrigel assays. M cells were co-injected with S cells in the dorsal prostate of immunodeficient mice and monitored by bioluminescence for tumor growth and metastatic dissemination. SPARC levels were determined by immunohistochemistry and real-time RT-PCR in tumors and by ELISA in plasma from patients with metastatic or non-metastatic prostate cancer. RESULTS: Comparative secretome analysis yielded 213 proteins differentially secreted between M and S cells. Of these, the protein most abundantly secreted in S relative to M cells was SPARC. Immunodepletion of SPARC inhibited the enhanced invasiveness of M induced by S conditioned medium. Knock down of SPARC in S cells abrogated the capacity of its conditioned medium to enhance the in vitro invasiveness of M cells and compromised their potential to boost the metastatic behavior of M cells in vivo. In most primary human prostate cancer samples, SPARC was expressed in the epithelial tumoral compartment of metastatic cases. CONCLUSIONS: The matricellular protein SPARC, secreted by a prostate cancer clonal tumor cell subpopulation displaying non-CSC properties, is a critical mediator of paracrine effects exerted on a distinct tumor cell subpopulation enriched in CSC. This paracrine interaction results in an enhanced metastatic behavior of the CSC-enriched tumor subpopulation. SPARC is expressed in the neoplastic cells of primary prostate cancer samples from metastatic cases, and could thus constitute a tumor progression biomarker and a therapeutic target in advanced prostate cancer.


Assuntos
Metástase Linfática/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Osteonectina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Epitélio/efeitos dos fármacos , Epitélio/patologia , Espaço Extracelular/metabolismo , Humanos , Masculino , Invasividade Neoplásica
13.
Nucleic Acids Res ; 40(1): 196-205, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21911360

RESUMO

Pairing of a given E3 ubiquitin ligase with different E2s allows synthesis of ubiquitin conjugates of different topologies. While this phenomenon contributes to functional diversity, it remains largely unknown how a single E3 ubiquitin ligase recognizes multiple E2s, and whether identical structural requirements determine their respective interactions. The E3 ubiquitin ligase RNF8 that plays a critically important role in transducing DNA damage signals, interacts with E2s UBCH8 and UBC13, and catalyzes both K48- and K63-linked ubiquitin chains. Interestingly, we report here that a single-point mutation (I405A) on the RNF8 polypeptide uncouples its ability in catalyzing K48- and K63-linked ubiquitin chain formation. Accordingly, while RNF8 interacted with E2s UBCH8 and UBC13, its I405A mutation selectively disrupted its functional interaction with UBCH8, and impaired K48-based poly-ubiquitylation reactions. In contrast, RNF8 I405A preserved its interaction with UBC13, synthesized K63-linked ubiquitin chains, and assembled BRCA1 and 53BP1 at sites of DNA breaks. Together, our data suggest that RNF8 regulates K48- and K63-linked poly-ubiquitylation via differential RING-dependent interactions with its E2s UBCH8 and UBC13, respectively.


Assuntos
Lisina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Animais , Células Cultivadas , Dano ao DNA , Camundongos , Dados de Sequência Molecular , Mutação Puntual , Complexo de Endopeptidases do Proteassoma/metabolismo , Estabilidade Proteica , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
14.
J Lipid Res ; 54(5): 1207-20, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23423838

RESUMO

Acid ceramidase (AC) catalyzes the hydrolysis of ceramide into sphingosine, in turn a substrate of sphingosine kinases that catalyze its conversion into the mitogenic sphingosine-1-phosphate. AC is expressed at high levels in several tumor types and has been proposed as a cancer therapeutic target. Using a model derived from PC-3 prostate cancer cells, the highly tumorigenic, metastatic, and chemoresistant clone PC-3/Mc expressed higher levels of the AC ASAH1 than the nonmetastatic clone PC-3/S. Stable knockdown of ASAH1 in PC-3/Mc cells caused an accumulation of ceramides, inhibition of clonogenic potential, increased requirement for growth factors, and inhibition of tumorigenesis and lung metastases. We developed de novo ASAH1 inhibitors, which also caused a dose-dependent accumulation of ceramides in PC-3/Mc cells and inhibited their growth and clonogenicity. Finally, immunohistochemical analysis of primary prostate cancer samples showed that higher levels of ASAH1 were associated with more advanced stages of this neoplasia. These observations confirm ASAH1 as a therapeutic target in advanced and chemoresistant forms of prostate cancer and suggest that our new potent and specific AC inhibitors could act by counteracting critical growth properties of these highly aggressive tumor cells.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Ceramidase Ácida/genética , Terapia de Alvo Molecular , Neoplasias da Próstata/genética , Ceramidase Ácida/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Ceramidas/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Lisofosfolipídeos/metabolismo , Masculino , Metástase Neoplásica , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Esfingosina/análogos & derivados , Esfingosina/metabolismo
15.
Exp Cell Res ; 318(18): 2365-76, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22814251

RESUMO

The induction of DNA double-strand breaks (DSBs) elicits a plethora of responses that redirect many cellular functions to the vital task of repairing the injury, collectively known as the DNA damage response (DDR). We have found that, in the absence of DNA damage, the DSB repair factors RNF8 and BRCA1 are associated with the nucleolus. Shortly after exposure of cells to γ-radiation, RNF8 and BRCA1 translocated from the nucleolus to damage foci, a traffic that was reverted several hours after the damage. RNF8 interacted through its FHA domain with the ribosomal protein RPSA, and knockdown of RPSA caused a depletion of nucleolar RNF8 and BRCA1, suggesting that the interaction of RNF8 with RPSA is critical for the nucleolar localization of these DDR factors. Knockdown of RPSA or RNF8 impaired bulk protein translation, as did γ-irradiation, the latter being partially countered by overexpression of exogenous RNF8. Our results suggest that RNF8 and BRCA1 are anchored to the nucleolus through reversible interactions with RPSA and that, in addition to its known functions in DDR, RNF8 may play a role in protein synthesis, possibly linking the nucleolar exit of this factor to the attenuation of protein synthesis in response to DNA damage.


Assuntos
Proteína BRCA1/metabolismo , Nucléolo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteína BRCA1/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Células HeLa , Humanos , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ubiquitina-Proteína Ligases
16.
Arch Esp Urol ; 66(5): 475-86, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23793765

RESUMO

Tumors constitute complex ecosystems with multiple interactions among neoplastic cells displaying various phenotypes and functions and where the tumoral niche is built with an active participation of the host environment that also impacts the malignant progression of the tumor cells. Irrespective of the cell of origin of prostate adenocarcinoma, mounting evidences support the existence of a hierarchy within neoplastic prostate cells that contributes to the heterogeneity of these tumors. At the origin of this hierarchy are small populations of tumor cells with high self-renewal potential and also capable of generating progeny tumor cells that lose self-renewal properties as they acquire more differentiated phenotypes. These cancer stem cells (CSC) depend on active gene networks that confer them with their self-renewal capacity through symmetrical divisions whereas they can also undergo asymmetrical division and differentiation either as stochastic events or in response to environmental cues. Although new experimental evidences indicate that this is can be a reversible process, thus blurring the distinction between CSCs and non-CSCs, the former are considered as the drivers of tumor growth and evolution, and thus a prime target for therapeutic intervention. Of particular importance in prostate cancer, CSCs may constitute the repository population of androgen-insensitive and chemotherapy-resistant tumor cells responsible for castration-resistant and chemotherapy-insensitive tumors, thus their identification and quantification in primary and metastatic neoplasms could play important roles in the management of this disease.


Assuntos
Células-Tronco Neoplásicas/patologia , Neoplasias da Próstata/patologia , Adulto , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Orquiectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Células-Tronco/fisiologia
17.
Elife ; 122023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38014932

RESUMO

Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.


Assuntos
Células Endoteliais , Infarto do Miocárdio , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Reprogramação Metabólica , Estresse Oxidativo , Glicólise , Glutationa/metabolismo , Fosfofrutoquinase-2/metabolismo
18.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111342

RESUMO

Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.

19.
Front Immunol ; 13: 926304, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36119118

RESUMO

Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/ß-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches.


Assuntos
Glutamina , Neoplasias , Carbono , Glucose , Hexosaminas , Humanos , Hipoglicemiantes , Lactatos , Lipídeos , Microambiente Tumoral/genética
20.
J Biol Chem ; 285(27): 20683-90, 2010 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-20430883

RESUMO

The lipid raft protein Flotillin-1 was previously shown to be required for cell proliferation. Here we show that it is critical for the maintenance of the levels of the mitotic regulator Aurora B. Knockdown of Flotillin-1 induced aberrant mitotic events similar to those produced by Aurora B depletion and led to a marked decline in Aurora B levels and activity. Transfection of wild-type full-length Flotillin-1 or forms directed to the nucleus increased Aurora B levels and activity. Flotillin-1 interacted with Aurora B directly through its SPFH domain in a complex distinct from the chromosomal passenger protein complex, and the two proteins co-purified in nuclear, non-raft fractions. These observations are the first evidence for a function of Flotillin-1 outside of lipid rafts and suggest its critical role in the maintenance of a pool of active Aurora B.


Assuntos
Proteínas de Membrana/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Antibacterianos/farmacologia , Aurora Quinase B , Aurora Quinases , Síndrome CREST/sangue , Divisão Celular , Núcleo Celular/fisiologia , Primers do DNA , Regulação para Baixo , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Marcação In Situ das Extremidades Cortadas , Proteínas Inibidoras de Apoptose , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/farmacologia , Oligopeptídeos/farmacologia , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/efeitos dos fármacos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Survivina , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA