Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 300(7): 107481, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38901558

RESUMO

Beta-adrenergic receptors (ßARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine hormone-induced stress responses, such as elevation of heart rate. Besides those that are plasma membrane-bound, endomembrane ßARs are also signaling competent. Dysregulation of ßAR pathways underlies severe pathological conditions. Emerging evidence indicates pathological molecular signatures in deeper endomembrane ßARs signaling, likely contributing to conditions such as cardiomyocyte hypertrophy and apoptosis. However, the lack of approaches to control endomembrane ß1ARs has impeded linking signaling with pathology. Informed by the ß1AR-catecholamine interactions, we engineered an efficient photolabile proligand (OptoIso) to trigger ßAR signaling exclusively in endomembrane regions using blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. OptoIso also allows optical activation of plasma membrane ßAR signaling in selected single cells with native fidelity, which can be reversed by terminating blue light. Thus, OptoIso will be a valuable experimental tool to elicit spatial and temporal control of ßAR signaling in user-defined endomembrane or plasma membrane regions in unmodified cells with native fidelity.


Assuntos
Membrana Celular , Receptores Adrenérgicos beta 1 , Transdução de Sinais , Humanos , Membrana Celular/metabolismo , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 1/genética , Células HEK293 , Luz , Animais
2.
J Biol Chem ; 299(11): 105269, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739036

RESUMO

Prenylation is an irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Dysregulation of prenylation contributes to multiple disorders, including cancers and vascular and neurodegenerative diseases. Prenyltransferases tether isoprenoid lipids to proteins via a thioether linkage during prenylation. Pharmacological inhibition of the lipid synthesis pathway by statins is a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential inhibition. We examined the prenylation of carboxy-terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to prenylation and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide, statin sensitivity, and extent of prenylation. Our results also show a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings indicate a plausible mechanism allowing for statins to differentially perturb heterotrimeric G protein signaling in cells depending on their Gγ-subtype composition. Our results may also provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Prenilação de Proteína , Humanos , Motivos de Aminoácidos , Resistência a Medicamentos/genética , Células HeLa , Proteínas Heterotriméricas de Ligação ao GTP/química , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Modelos Moleculares , Mutação , Prenilação de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
Cell Commun Signal ; 22(1): 394, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118111

RESUMO

Melanopsin is a photopigment belonging to the G Protein-Coupled Receptor (GPCR) family expressed in a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) and responsible for a variety of processes. The bistability and, thus, the possibility to function under low retinal availability would make melanopsin a powerful optogenetic tool. Here, we aim to utilize mouse melanopsin to trigger macrophage migration by its subcellular optical activation with localized blue light, while simultaneously imaging the migration with red light. To reduce melanopsin's red light sensitivity, we employ a combination of in silico structure prediction and automated quantum mechanics/molecular mechanics modeling to predict minimally invasive mutations to shift its absorption spectrum towards the shorter wavelength region of the visible spectrum without compromising the signaling efficiency. The results demonstrate that it is possible to achieve melanopsin mutants that resist red light-induced activation but are activated by blue light and display properties indicating preserved bistability. Using the A333T mutant, we show that the blue light-induced subcellular melanopsin activation triggers localized PIP3 generation and macrophage migration, which we imaged using red light, demonstrating the optogenetic utility of minimally engineered melanopsins.


Assuntos
Opsinas de Bastonetes , Transdução de Sinais , Animais , Opsinas de Bastonetes/metabolismo , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/química , Camundongos , Movimento Celular , Simulação por Computador , Macrófagos/metabolismo , Optogenética/métodos , Luz , Mutação
4.
Cell Chem Biol ; 31(7): 1236-1238, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39029452

RESUMO

In this issue of Cell Chemical Biology, Kim et al.1 present a novel optogenetic tool, opto-PLCß, to control PLCß signaling optically. In addition to eliciting PIP2 hydrolysis and downstream signaling in cells, opto-PLCß also enabled probing the impact of PLCß signaling on amygdala synaptic plasticity and fear learning in mice.


Assuntos
Optogenética , Fosfolipase C beta , Fosfolipase C beta/metabolismo , Animais , Camundongos , Transdução de Sinais , Humanos , Plasticidade Neuronal , Tonsila do Cerebelo/metabolismo
5.
ACS Synth Biol ; 13(1): 242-258, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38092428

RESUMO

Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with broad physiological and pathological significance. Compared with other Gα members, GαqGTP activates many crucial effectors, including PLCß (Phospholipase Cß) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCß regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal-debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCß signaling controls cellular physiology has been difficult. Since activated PLCß induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCß interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCß signaling control, our data indicate that the molecular competition between RhoGEFs and PLCß for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.


Assuntos
Transdução de Sinais , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo , Transdução de Sinais/fisiologia
6.
bioRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405895

RESUMO

Beta-adrenergic receptors (ßARs) are G protein-coupled receptors (GPCRs) that mediate catecholamine-induced stress responses, such as heart rate increase and bronchodilation. In addition to signals from the cell surface, ßARs also broadcast non-canonical signaling activities from the cell interior membranes (endomembranes). Dysregulation of these receptor pathways underlies severe pathological conditions. Excessive ßAR stimulation is linked to cardiac hypertrophy, leading to heart failure, while impaired stimulation causes compromised fight or flight stress responses and homeostasis. In addition to plasma membrane ßAR, emerging evidence indicates potential pathological implications of deeper endomembrane ßARs, such as inducing cardiomyocyte hypertrophy and apoptosis, underlying heart failure. However, the lack of approaches to control their signaling in subcellular compartments exclusively has impeded linking endomembrane ßAR signaling with pathology. Informed by the ß1AR-catecholamine interactions, we engineered an efficiently photo-labile, protected hydroxy ß1AR pro-ligand (OptoIso) to trigger ßAR signaling at the cell surface, as well as exclusive endomembrane regions upon blue light stimulation. Not only does OptoIso undergo blue light deprotection in seconds, but it also efficiently enters cells and allows examination of G protein heterotrimer activation exclusively at endomembranes. In addition to its application in the optical interrogation of ßARs in unmodified cells, given its ability to control deep organelle ßAR signaling, OptoIso will be a valuable experimental tool.

7.
bioRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38895415

RESUMO

G protein-coupled receptors (GPCRs) are efficient Guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP, and free Gßγ, and are major disease drivers. Evidence shows that the ambient low threshold signaling required for cells is likely supplemented by signaling regulators such as non-GPCR GEFs and Guanine nucleotide Dissociation Inhibitors (GDIs). Activators of G protein Signaling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signaling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3's G protein regulatory (GPR) motif, to understand its GDI activity and induce standalone Gßγ signaling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gßγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signaling pathways and triggering GPCR-independent Gßγ signaling in cells and in vivo.

8.
bioRxiv ; 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37461501

RESUMO

Prenylation is a universal and irreversible post-translational modification that supports membrane interactions of proteins involved in various cellular processes, including migration, proliferation, and survival. Thus, dysregulation of prenylation contributes to multiple disorders, including cancers, vascular diseases, and neurodegenerative diseases. During prenylation, prenyltransferase enzymes tether metabolically produced isoprenoid lipids to proteins via a thioether linkage. Pharmacological inhibition of the lipid synthesis pathway by statins has long been a therapeutic approach to control hyperlipidemia. Building on our previous finding that statins inhibit membrane association of G protein γ (Gγ) in a subtype-dependent manner, we investigated the molecular reasoning for this differential. We examined the prenylation efficacy of carboxy terminus (Ct) mutated Gγ in cells exposed to Fluvastatin and prenyl transferase inhibitors and monitored the subcellular localization of fluorescently tagged Gγ subunits and their mutants using live-cell confocal imaging. Reversible optogenetic unmasking-masking of Ct residues was used to probe their contribution to the prenylation process and membrane interactions of the prenylated proteins. Our findings suggest that specific Ct residues regulate membrane interactions of the Gγ polypeptide statin sensitivity, and prenylation efficacy. Our results also show that a few hydrophobic and charged residues at the Ct are crucial determinants of a protein's prenylation ability, especially under suboptimal conditions. Given the cell and tissue-specific expression of different Gγ subtypes, our findings explain how and why statins differentially perturb heterotrimeric G protein signaling in specific cells and tissues. Our results may provide molecular reasoning for repurposing statins as Ras oncogene inhibitors and the failure of using prenyltransferase inhibitors in cancer treatment.

9.
bioRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609229

RESUMO

Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins, including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with a broad physiological and pathological significance. Compared to other Gα members, GαqGTP activates many crucial effectors, including PLCß (Phospholipase Cß) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCß regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal - debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCß signaling controls cellular physiology has been difficult. Since activated PLCß induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCß interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCß signaling control, our data indicate that the molecular competition between RhoGEFs and PLCß for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.

10.
Chem Catal ; 3(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37982045

RESUMO

An outstanding challenge in the Pd-catalyzed functionalization of allylamines is the control of stereochemistry. Terminal alkenes preferentially undergo Heck-type reactions, while internal alkenes may undergo a mixture of Heck and C-H activation reactions that give mixtures of stereochemical products. In the case of unprotected allylamines, the challenge in achieving C-H activation is that facile in situ formation of Pd nanoparticles leads to preferential formation of trans rather than cis-substituted products. In this study we have demonstrated the feasibility of using mono-protected amino acid (MPAA) ligands as metal protecting groups to prevent aggregation and reduction, allowing the selective synthesis of free cis-arylated allylamines. This method complements Heck-selective methods, allowing complete stereochemical control over the synthesis of cinnamylamines, an important class of amine that can serve as therapeutics directly or as advanced intermediates. To highlight the utility of the methodology, we have demonstrated rapid access to mu opioid receptor ligands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA