Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(15): e2210808120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37023125

RESUMO

African swine fever virus (ASFV) is a large, double-stranded DNA virus that causes a fatal disease in pigs, posing a threat to the global pig industry. Whereas some ASFV proteins have been found to play important roles in ASFV-host interaction, the functional roles of many proteins are still largely unknown. In this study, we identified I73R, an early viral gene in the replication cycle of ASFV, as a key virulence factor. Our findings demonstrate that pI73R suppresses the host innate immune response by broadly inhibiting the synthesis of host proteins, including antiviral proteins. Crystallization and structural characterization results suggest that pI73R is a nucleic-acid-binding protein containing a Zα domain. It localizes in the nucleus and inhibits host protein synthesis by suppressing the nuclear export of cellular messenger RNA (mRNAs). While pI73R promotes viral replication, the deletion of the gene showed that it is a nonessential gene for virus replication. In vivo safety and immunogenicity evaluation results demonstrate that the deletion mutant ASFV-GZΔI73R is completely nonpathogenic and provides effective protection to pigs against wild-type ASFV. These results reveal I73R as a virulence-related gene critical for ASFV pathogenesis and suggest that it is a potential target for virus attenuation. Accordingly, the deletion mutant ASFV-GZΔI73R can be a potent live-attenuated vaccine candidate.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Virulência/genética , Febre Suína Africana/prevenção & controle , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Genes Virais
2.
Virus Genes ; 59(3): 417-426, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36877428

RESUMO

Bovine gammaherpesvirus 4 (BoHV-4) is a common virus detected in bovine with respiratory disease worldwide. In this study, we identified and characterized a novel BoHV-4 strain, referred as HB-ZJK, in vaginal swabs collected from cattle in China, 2022. The long unique region (LUR) of HB-ZJK is 10,9811 bp in length. It shares 99.17% to 99.38% nucleotide identity to five BoHV-4 strains available in GenBank and the highest similarity was seen with BoHV-4V. test (JN133502.1) strain (99.38%). Mutations, insertions or deletions were observed mainly in HB-ZJK gB (ORF8), TK (ORF21), gH (ORF22), MCP (ORF25), PK (ORF36), gM (ORF39), and gL (ORF47) genes compared to its genomic coordinates. Phylogenetic analyses of gB and TK genes showed that HB-ZJK clustered with China 512 (2019), B6010 (2009), and J4034 (2009) strains, demonstrating that the isolated HB-ZJK belongs to genotype 1. This is the first report that has revealed a comprehensive genome profile of BoHV-4 strain in China. This study will provide foundation for epidemiological investigations of BoHV-4 and contribute to the molecular and pathogenic studies of BoHV-4.


Assuntos
Doenças dos Bovinos , Infecções por Herpesviridae , Herpesvirus Bovino 1 , Herpesvirus Bovino 4 , Feminino , Animais , Bovinos , Filogenia , Infecções por Herpesviridae/veterinária , Herpesvirus Bovino 4/genética , China , Herpesvirus Bovino 1/genética
3.
Virus Genes ; 59(4): 582-590, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37191778

RESUMO

African swine fever virus (ASFV) is highly contagious and can cause lethal disease in pigs. ASFV p72 protein is a major capsid protein that presents as trimer in the virion. Epitopes on the surface of p72 trimer are considered as protective antigens. In this study, recombinant p72 protein and p72-baculovirus were constructed and obtained. Three monoclonal antibodies (mAbs) specific to ASFV p72 protein, designated as 1A3, 2B5 and 4A5, were generated. Among them, 4A5 showed strong reactivity with ASFV infected cells. Subsequently, the epitope recognized by 4A5 was mapped and identified using a series of overlapping peptides generated from p72 protein. IFA and western blot analyses showed that 4A5 recognized the linear epitope of p72 monomer located between amino acids 245-285 and recognized the conformational epitope located at the surface and top of the p72 trimer. These findings will enrich our knowledge regarding the epitope on p72 protein and provide valuable information for further characterization of the antigenicity and molecular functions of p72 protein.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Epitopos , Anticorpos Monoclonais , Proteínas do Capsídeo , Proteínas Recombinantes
4.
Emerg Microbes Infect ; 12(1): 2148560, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36378022

RESUMO

African swine fever (ASF) is a highly contagious disease of domestic and wild pigs caused by the African swine fever virus (ASFV). The current research on ASF vaccines focuses on the development of naturally attenuated, isolated, or genetically engineered live viruses that have been demonstrated to produce reliable immunity. As a result, a genetically engineered virus containing five genes deletion was synthesized based on ASFV Chinese strain GZ201801, named ASFV-GZΔI177LΔCD2vΔMGF. The five-gene-deleted ASFV was safe and fully attenuated in pigs and provides reliable protection against the parental ASFV strain challenge. This indicates that the five-gene-deleted ASFV is a potential candidate for a live attenuated vaccine that could control the spread of ASFV.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Vacinas Atenuadas/genética , Vacinas Virais/genética , Proteínas Virais/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA