Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(7997): 79-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172640

RESUMO

Grain boundaries (GBs), with their diversity in both structure and structural transitions, play an essential role in tailoring the properties of polycrystalline materials1-5. As a unique GB subset, {112} incoherent twin boundaries (ITBs) are ubiquitous in nanotwinned, face-centred cubic materials6-9. Although multiple ITB configurations and transitions have been reported7,10, their transition mechanisms and impacts on mechanical properties remain largely unexplored, especially in regard to covalent materials. Here we report atomic observations of six ITB configurations and structural transitions in diamond at room temperature, showing a dislocation-mediated mechanism different from metallic systems11,12. The dominant ITBs are asymmetric and less mobile, contributing strongly to continuous hardening in nanotwinned diamond13. The potential driving forces of ITB activities are discussed. Our findings shed new light on GB behaviour in diamond and covalent materials, pointing to a new strategy for development of high-performance, nanotwinned materials.

2.
Nature ; 626(8000): 779-784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383626

RESUMO

Moiré superlattices formed by twisted stacking in van der Waals materials have emerged as a new platform for exploring the physics of strongly correlated materials and other emergent phenomena1-5. However, there remains a lack of research on the mechanical properties of twisted-layer van der Waals materials, owing to a lack of suitable strategies for making three-dimensional bulk materials. Here we report the successful synthesis of a polycrystalline boron nitride bulk ceramic with high room-temperature deformability and strength. This ceramic, synthesized from an onion-like boron nitride nanoprecursor with conventional spark plasma sintering and hot-pressing sintering, consists of interlocked laminated nanoplates in which parallel laminae are stacked with varying twist angles. The compressive strain of this bulk ceramic can reach 14% before fracture, about one order of magnitude higher compared with traditional ceramics (less than 1% in general), whereas the compressive strength is about six times that of ordinary hexagonal boron nitride layered ceramics. The exceptional mechanical properties are due to a combination of the elevated intrinsic deformability of the twisted layering in the nanoplates and the three-dimensional interlocked architecture that restricts deformation from propagating across individual nanoplates. The advent of this twisted-layer boron nitride bulk ceramic opens a gate to the fabrication of highly deformable bulk ceramics.

3.
Nature ; 607(7919): 486-491, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35794481

RESUMO

Understanding the direct transformation from graphite to diamond has been a long-standing challenge with great scientific and practical importance. Previously proposed transformation mechanisms1-3, based on traditional experimental observations that lacked atomistic resolution, cannot account for the complex nanostructures occurring at graphite-diamond interfaces during the transformation4,5. Here we report the identification of coherent graphite-diamond interfaces, which consist of four basic structural motifs, in partially transformed graphite samples recovered from static compression, using high-angle annular dark-field scanning transmission electron microscopy. These observations provide insight into possible pathways of the transformation. Theoretical calculations confirm that transformation through these coherent interfaces is energetically favoured compared with those through other paths previously proposed1-3. The graphite-to-diamond transformation is governed by the formation of nanoscale coherent interfaces (diamond nucleation), which, under static compression, advance to consume the remaining graphite (diamond growth). These results may also shed light on transformation mechanisms of other carbon materials and boron nitride under different synthetic conditions.

4.
Proc Natl Acad Sci U S A ; 121(14): e2319663121, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38547059

RESUMO

The structure of dislocation cores, the fundamental knowledge on crystal plasticity, remains largely unexplored in covalent crystals. Here, we conducted atomically resolved characterizations of dislocation core structures in a plastically deformed diamond anvil cell tip that was unloaded from an exceptionally high pressure of 360 GPa. Our observations unveiled a series of nonequilibrium dislocation cores that deviate from the commonly accepted "five-seven-membered ring" dislocation core model found in FCC-structured covalent crystals. The nonequilibrium dislocation cores were generated through a process known as "mechanical quenching," analogous to the quenching process where a high-energy state is rapidly frozen. The density functional theory-based molecular dynamic simulations reveal that the phenomenon of mechanical quenching in diamond arises from the challenging relaxation of the nonequilibrium configuration, necessitating a large critical strain of 25% that is difficult to maintain. Further electronic-scale analysis suggested that such large critical strain is spent on the excitation of valance electrons for bond breaking and rebonding during relaxation. These findings establish a foundation for the plasticity theory of covalent materials and provide insights into the design of electrical and luminescent properties in diamond, which are intimately linked to the dislocation core structure.

5.
Nature ; 582(7812): 370-374, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32555490

RESUMO

The well known trade-off between hardness and toughness (resistance to fracture) makes simultaneous improvement of both properties challenging, especially in diamond. The hardness of diamond can be increased through nanostructuring strategies1,2, among which the formation of high-density nanoscale twins - crystalline regions related by symmetry - also toughens diamond2. In materials other than diamond, there are several other promising approaches to enhancing toughness in addition to nanotwinning3, such as bio-inspired laminated composite toughening4-7, transformation toughening8 and dual-phase toughening9, but there has been little research into such approaches in diamond. Here we report the structural characterization of a diamond composite hierarchically assembled with coherently interfaced diamond polytypes (different stacking sequences), interwoven nanotwins and interlocked nanograins. The architecture of the composite enhances toughness more than nanotwinning alone, without sacrificing hardness. Single-edge notched beam tests yield a toughness up to five times that of synthetic diamond10, even greater than that of magnesium alloys. When fracture occurs, a crack propagates through diamond nanotwins of the 3C (cubic) polytype along {111} planes, via a zigzag path. As the crack encounters regions of non-3C polytypes, its propagation is diffused into sinuous fractures, with local transformation into 3C diamond near the fracture surfaces. Both processes dissipate strain energy, thereby enhancing toughness. This work could prove useful in making superhard materials and engineering ceramics. By using structural architecture with synergetic effects of hardening and toughening, the trade-off between hardness and toughness may eventually be surmounted.

6.
Immunity ; 44(5): 1204-14, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27156385

RESUMO

In contrast to horizontal transmission of hepatitis B virus (HBV) between adults, which often leads to self-limited acute infection, vertical transmission of HBV from mother to child often leads to chronic infection. However, the mechanisms linking vertical transmission with chronic infection are not known. We developed a mouse model to study the effect of maternal HBV infection on HBV persistence in offspring and found that HBV carried by the mother impaired CD8(+) T cell responses to HBV in her offspring, resulting in HBV persistence. This impairment of CD8(+) T cell responses was mediated by hepatic macrophages, which were predisposed by maternal HBV e antigen (HBeAg) to support HBV persistence by upregulation of inhibitory ligand PD-L1 and altered polarization upon restimulation with HBeAg. Depletion of hepatic macrophages led to CD8(+) T cell activation and HBV clearance in the offspring, raising the possibility of targeting macrophages to treat chronic HBV patients.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Vírus da Hepatite B/fisiologia , Hepatite B/imunologia , Transmissão Vertical de Doenças Infecciosas , Macrófagos/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Animais Geneticamente Modificados , Antígeno B7-H1/genética , Linfócitos T CD8-Positivos/virologia , Feminino , Regulação da Expressão Gênica , Hepatite B/transmissão , Antígenos E da Hepatite B/imunologia , Humanos , Ativação Linfocitária , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Carga Viral
7.
Mol Cell ; 68(2): 281-292.e5, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29033320

RESUMO

Autophagy is required for benign hepatic tumors to progress into malignant hepatocellular carcinoma. However, the mechanism is unclear. Here, we report that mitophagy, the selective removal of mitochondria by autophagy, positively regulates hepatic cancer stem cells (CSCs) by suppressing the tumor suppressor p53. When mitophagy is enhanced, p53 co-localizes with mitochondria and is removed by a mitophagy-dependent manner. However, when mitophagy is inhibited, p53 is phosphorylated at serine-392 by PINK1, a kinase associated with mitophagy, on mitochondria and translocated into the nucleus, where it binds to the NANOG promoter to prevent OCT4 and SOX2 transcription factors from activating the expression of NANOG, a transcription factor critical for maintaining the stemness and the self-renewal ability of CSCs, resulting in the reduction of hepatic CSC populations. These results demonstrate that mitophagy controls the activities of p53 to maintain hepatic CSCs and provide an explanation as to why autophagy is required to promote hepatocarcinogenesis.


Assuntos
Neoplasias Hepáticas/metabolismo , Mitofagia , Células-Tronco Neoplásicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteína Homeobox Nanog/biossíntese , Proteína Homeobox Nanog/genética , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fosforilação/genética , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína Supressora de Tumor p53/genética
8.
J Am Chem Soc ; 146(20): 13797-13804, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722223

RESUMO

Hydrides are promising candidates for achieving room-temperature superconductivity, but a formidable challenge remains in reducing the stabilization pressure below a megabar. In this study, we successfully synthesized a ternary lanthanum borohydride by introducing the nonmetallic element B into the La-H system, forming robust B-H covalent bonds that lower the pressure required to stabilize the superconducting phase. Electrical transport measurements confirm the presence of superconductivity with a critical temperature (Tc) of up to 106 K at 90 GPa, as evidenced by zero resistance and Tc shift under an external magnetic field. X-ray diffraction and transport measurements identify the superconducting compound as LaB2H8, a nonclathrate hydride, whose crystal structure remains stable at pressures as low as ∼ half megabar (59 GPa). Stabilizing superconductive stoichiometric LaB2H8 in a submegabar pressure regime marks a substantial advancement in the quest for high-Tc superconductivity in polynary hydrides, bringing us closer to the ambient pressure conditions.

9.
Nat Mater ; 22(11): 1317-1323, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37735525

RESUMO

Materials that possess the ability to self-heal cracks at room temperature, akin to living organisms, are highly sought after. However, achieving crack self-healing in inorganic materials, particularly with covalent bonds, presents a great challenge and often necessitates high temperatures and considerable atomic diffusion. Here we conducted a quantitative evaluation of the room-temperature self-healing behaviour of a fractured nanotwinned diamond composite, revealing that the self-healing properties of the composite stem from both the formation of nanoscale diamond osteoblasts comprising sp2- and sp3-hybridized carbon atoms at the fractured surfaces, and the atomic interaction transition from repulsion to attraction when the two fractured surfaces come into close proximity. The self-healing process resulted in a remarkable recovery of approximately 34% in tensile strength for the nanotwinned diamond composite. This discovery sheds light on the self-healing capability of nanostructured diamond, offering valuable insights for future research endeavours aimed at enhancing the toughness and durability of brittle ceramic materials.

10.
Nat Mater ; 22(1): 42-49, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36522415

RESUMO

Traditional ceramics or metals cannot simultaneously achieve ultrahigh strength and high electrical conductivity. The elemental carbon can form a variety of allotropes with entirely different physical properties, providing versatility for tuning mechanical and electrical properties in a wide range. Here, by precisely controlling the extent of transformation of amorphous carbon into diamond within a narrow temperature-pressure range, we synthesize an in situ composite consisting of ultrafine nanodiamond homogeneously dispersed in disordered multilayer graphene with incoherent interfaces, which demonstrates a Knoop hardness of up to ~53 GPa, a compressive strength of up to ~54 GPa and an electrical conductivity of 670-1,240 S m-1 at room temperature. With atomically resolving interface structures and molecular dynamics simulations, we reveal that amorphous carbon transforms into diamond through a nucleation process via a local rearrangement of carbon atoms and diffusion-driven growth, different from the transformation of graphite into diamond. The complex bonding between the diamond-like and graphite-like components greatly improves the mechanical properties of the composite. This superhard, ultrastrong, conductive elemental carbon composite has comprehensive properties that are superior to those of the known conductive ceramics and C/C composites. The intermediate hybridization state at the interfaces also provides insights into the amorphous-to-crystalline phase transition of carbon.

11.
Proc Natl Acad Sci U S A ; 118(47)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34782460

RESUMO

Mechanical properties of covalent materials can be greatly enhanced with strategy of nanostructuring. For example, the nanotwinned diamond with an isotropic microstructure of interweaved nanotwins and interlocked nanograins shows unprecedented isotropic mechanical properties. How the anisotropic microstructure would impact on the mechanical properties of diamond has not been fully investigated. Here, we report the synthesis of diamond from superaligned multiwalled carbon nanotube films under high pressure and high temperature. Structural characterization reveals preferentially oriented diamond nanotwin bundles with an average twin thickness of ca. 2.9 nm, inherited from the directional nanotubes. This diamond exhibits extreme mechanical anisotropy correlated with its microstructure (e.g., the average Knoop hardness values measured with the major axis of the indenter perpendicular and parallel to nanotwin bundles are 233 ± 8 and 129 ± 9 GPa, respectively). Molecular dynamics simulation reveals that, in the direction perpendicular to the nanotwin bundles, the dense twin boundaries significantly hinder the motion of dislocations under indentation, while such a resistance is much weaker in the direction along the nanotwin bundles. Current work verifies the hardening effect in diamond via nanostructuring. In addition, the mechanical properties can be further tuned (anisotropy) with microstructure design and modification.

12.
Phys Chem Chem Phys ; 25(40): 27373-27379, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37791950

RESUMO

Three novel hexagonal Si-C-N structures, namely SiC3N3, SiC7N6, and SiC13N14, were constructed on the basis of the α-Si3N4 crystal structure. The stability of the three structures is demonstrated by analyzing their elastic constants and phonon dispersion spectra and by calculating their formation energies. The calculated band structures and partial densities of states suggest that the SiC3N3 and SiC7N6 structures possess hole conductivity. The electron orbital analyses indicate that the SiC3N3 and SiC7N6 crystals possess three-dimensional and one-dimensional conductivity, respectively. SiC13N14 is a semiconductor with a wide bandgap of 4.39 eV. Based on two different hardness models and indentation shear stress calculations, the Vickers hardness values of SiC3N3, SiC7N6, and SiC13N14 are estimated to be 28.04/28.45/16.18 GPa, 31.17/34.19/20.24 GPa, and 40.60/41.59/36.40 GPa. This result indicates that SiC3N3 and SiC7N6 are conductive hard materials while SiC13N14 is a quasi superhard material.

13.
Nano Lett ; 22(12): 4979-4984, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35639704

RESUMO

The traditional hardness-toughness tradeoff poses a substantial challenge for the development of superhard materials. Due to strong covalent bonds and intrinsic brittleness, the full advantage of microstructure engineering for enhanced mechanical properties requires further exploration in superhard materials. Here heterogeneous diamond-cBN composites were synthesized from a carefully prepared precursor (hBN microflakes uniformly wrapped by onion carbon nanoparticles) through phase transitions under high pressure and high temperature. The synthesized composites inherit the architecture of the precursors: cBN regions with an anisotropic profile that spans several micrometers laterally and several hundred nanometers in thickness are embedded in a nanograined diamond matrix with high-density nanotwins. A significantly high fracture toughness of 16.9 ± 0.8 MPa m1/2 is achieved, far beyond those of single-crystal diamond and cBN, without sacrificing hardness. A detailed TEM analysis revealed multiple toughening mechanisms closely related to the microstructure. This work sheds light on microstructure engineering in superhard materials for excellent mechanical properties.

14.
Small ; 18(22): e2201212, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35396819

RESUMO

Superhard materials other than diamond and cubic boron nitride have been actively pursued in the past two decades. Cubic silicon carbide, i.e., ß-SiC, is a well-known hard material with typical hardness <30 GPa. Although nanostructuring has been proven to be effective in enhancing materials' hardness by virtue of the Hall-Petch effect, it remains a significant challenge to improve hardness of ß-SiC beyond the superhard threshold of 40 GPa. Here, the fabrication of nanocrystalline ß-SiC bulks is reported by sintering nanoparticles under high pressure and high temperature. These ß-SiC bulks are densely sintered with average grain sizes down to 10 nm depending on the sintering conditions, and the Vickers hardness increases with decreasing grain size following the Hall-Petch relation. Particularly, the bulk sintered under 25 GPa and 1400 °C shows an average grain size of 10 nm and an asymptotic Vickers hardness of 41.5 GPa. Boosting the hardness of ß-SiC over the superhard threshold signifies an important progress in superhard materials research. A broader family of superhard materials is in sight through successful implementation of nanostructuring in other hard materials such as BP.

15.
Inorg Chem ; 61(25): 9631-9637, 2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35696435

RESUMO

Multiferroic materials with the cross-coupling of magnetic and ferroelectric orders provide a new platform for physics study and designing novel electronic devices. However, the weak coupling strength of ferroelectricity and magnetism is the main obstacle for potential applications. The recent research focuses on enhancing the coupling effect via synthesizing novel materials in a chemical route or tuning the multiferroicity in the physical way. Among them, pressure is an effective method to modify multiferroic materials, especially when the chemical doping has reached its tuning limit. In this work, we systemically studied the multiferroic properties in a hydrogen-bonded metal-organic framework (MOF) [(CH3)2NH2]Ni(HCOO)3 under high pressure. X-ray diffraction and Raman scattering reveal that a structural phase transition occurs in a pressure region of 6-9 GPa, and the crystal structure is greatly modified by pressure. With the ac magnetic susceptibility, pyroelectric current, and dielectric constant measurements, we obtain the multiferroic property evolution under high pressure and create a temperature-pressure phase diagram. Our study demonstrates that the pressure can modify the magnetic superexchange interaction and hydrogen bonding simultaneously in these perovskite-like MOFs. The multiferroic phase region has been expanded to higher temperature due to the pressure-enhanced spin-phonon coupling effect.

16.
Glob Chang Biol ; 27(20): 5310-5328, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34309964

RESUMO

Natural systems can undergo critical transitions, leading to substantial socioeconomic and ecological outcomes. "Ecological resilience" has been proposed to describe the capacity of natural systems to absorb external perturbation and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks. However, the mere application of ecological resilience in theoretical research and the lack of quantitative approaches present considerable obstacles for predicting critical transitions and understanding their mechanisms. Large marine ecosystems (LMEs) in the Northwestern Pacific are characterized by great biodiversity and productivity, as well as remarkable warming in recent decades. However, no information is available on the critical transitions and ecological resilience of LMEs in response to warming. Therefore, we applied an integrated resilience assessment framework to fisheries catch data from seven LMEs covering a wide range of regions, from tropical to subarctic, in the Northwestern Pacific to identify critical transitions, assess ecological resilience, and reconstruct folded stability landscapes, with a specific focus on the effects of warming. The results provide evidence of the occurrence of critical transitions, with fold bifurcation and hysteresis in response to increasing sea surface temperatures (SSTs) in the seven LMEs. In addition, these LMEs show similarities and synchronies in structure variations and critical transitions forced by warming. Both dramatic increases in SST and small fluctuations at the corresponding thresholds may trigger critical transitions. Ecological resilience decreases when approaching the tipping points and is repainted as the LMEs shift to alternative stable states with different resilient dynamics. Folded stability landscapes indicate that the responses of LMEs to warming are discontinuous, which may be caused by the reorganization of LMEs as their sensitivity to warming changes. Our study clarifies the nonlinear responses of LMEs to anthropogenic warming and provides examples of quantifying ecological resilience in empirical systems at unprecedented spatial and temporal scales.


Assuntos
Ecossistema , Aquecimento Global , Biodiversidade , Pesqueiros , Temperatura
17.
Nature ; 510(7504): 250-3, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24919919

RESUMO

Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ∼3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ∼5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ∼200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

18.
Proc Natl Acad Sci U S A ; 114(13): 3375-3380, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28289195

RESUMO

As an archetypal semimetal with complex and anisotropic Fermi surface and unusual electric properties (e.g., high electrical resistance, large magnetoresistance, and giant Hall effect), bismuth (Bi) has played a critical role in metal physics. In general, Bi displays diamagnetism with a high volumetric susceptibility ([Formula: see text]10-4). Here, we report unusual ferromagnetism in bulk Bi samples recovered from a molten state at pressures of 1.4-2.5 GPa and temperatures above [Formula: see text]1,250 K. The ferromagnetism is associated with a surprising structural memory effect in the molten state. On heating, low-temperature Bi liquid (L) transforms to a more randomly disordered high-temperature liquid (L') around 1,250 K. By cooling from above 1,250 K, certain structural characteristics of liquid L' are preserved in L. Bi clusters with characteristics of the liquid L' motifs are further preserved through solidification into the Bi-II phase across the pressure-independent melting curve, which may be responsible for the observed ferromagnetism.

19.
Nanotechnology ; 30(41): 415605, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31356187

RESUMO

SrTiO3(110) polar surface was treated with repeated cycles of argon ion sputtering and annealing. Three reconstructions, namely (4 × 1), (2 × 8), and (6 × 8), were identified with subsequent scanning tunneling microscopy measurements. Using the evaporation-induced self-assembly method, C60 molecules deposited onto these reconstruction surfaces demonstrated a quasi-close packing growth mode with substantial differences. Influence factors are revealed from the investigation of these differences, such as the substrate structure and topography as well as the intermolecular and molecular-substrate interactions. Our study emphasizes the feasibility of controllable molecular self-assembly through choosing surface reconstructions.

20.
Nanotechnology ; 30(34): 345203, 2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31108474

RESUMO

In two-dimensional layered materials, layer number and stacking order have strong effects on the optical and electronic properties. Tungsten disulfide (WS2) crystal, as one important member among transition metal dichalcogenides, has been usually prepared in a layered 2H prototype structure with space group P63/mmc ([Formula: see text]) in spite of many other expected ones such as 3R. Here, we report simultaneous growth of 2H and 3R stacked multilayer (ML) WS2 crystals in large scale by chemical vapor deposition and effects of layer number and stacking order on optical and electronic properties. As revealed in Raman and photoluminescence (PL) measurements, with an increase in layer number, 2H and 3R stacked ML WS2 crystals show similar variation of PL and Raman peaks in position and intensity. Compared to 2H stacked ML WS2, however, 3R stacked one always exhibits the larger red (blue) shift of Raman [Formula: see text] (A1g) peak and the appearance of PL A, B and I peaks at lower energies. Thereby, PL and Raman features depend on not only layer number but also stacking order. In addition, circularly polarized luminescence from two prototype WS2 crystals under circularly polarized excitation has also been investigated, showing obvious spin or valley polarization of these CVD-grown multilayer WS2 crystals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA