Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17834, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857657

RESUMO

Excess harvesting power can threaten the long-term sustainability of fisheries. Indicators of excess harvesting capacity must include input-output-based estimates of economic production efficiency. The increasing use of drifting Fish-Aggregating-Devices (DFADs) has boosted fishing productivity in high-seas tuna fisheries, perhaps beyond the biological capacity of the stocks, and is an object of global debate. We carried out a Data Envelopment Analysis (DEA) of relative changes in production efficiencies of the French purse-seine fleet targeting tropical tuna in the western Indian Ocean using two fishing strategies: (1) on floating objects (FOB) and (2) free swimming schools (FSC) using tuna catch and effort data spanning 1992-2019. We show that FOB fishing evolved dramatically through time with an estimated change of 3.6%yr-1 (8.0%yr-1 2007-2019), in contrast to 2.1%yr-1 for FSC. While the efficiency level in combining and using inputs has barely changed for FOB fishing, it means that all the growth in productivity comes from technical change for this strategy. The dynamics is different for the FSC with a mixture of innovation and higher efficiency. Immediate plans to improve input-based management in this region are needed to prevent further risks of overfishing to yellowfin (Thunnus albacares) and skipjack (Katsuwonus pelamis) tunas.


Assuntos
Conservação dos Recursos Naturais , Atum , Animais , Pesqueiros , Oceano Índico , Oceano Pacífico
2.
PLoS One ; 10(1): e0116335, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25625555

RESUMO

The European Union and other states are moving towards Ecosystem Based Fisheries Management to balance food production and security with wider ecosystem concerns. Fishing is only one of several sectors operating within the ocean environment, competing for renewable and non-renewable resources that overlap in a limited space. Other sectors include marine mining, energy generation, recreation, transport and conservation. Trade-offs of these competing sectors are already part of the process but attempts to detail how the seas are being utilised have been primarily based on compilations of data on human activity at large spatial scales. Advances including satellite and shipping automatic tracking enable investigation of factors influencing fishers' choice of fishing grounds at spatial scales relevant to decision-making, including the presence or avoidance of activities by other sectors. We analyse the determinants of English and Welsh scallop-dredging fleet behaviour, including competing sectors, operating in the eastern English Channel. Results indicate aggregate mining activity, maritime traffic, increased fishing costs, and the English inshore 6 and French 12 nautical mile limits negatively impact fishers' likelihood of fishing in otherwise suitable areas. Past success, net-benefits and fishing within the 12 NM predispose fishers to use areas. Systematic conservation planning has yet to be widely applied in marine systems, and the dynamics of spatial overlap of fishing with other activities have not been studied at scales relevant to fisher decision-making. This study demonstrates fisher decision-making is indeed affected by the real-time presence of other sectors in an area, and therefore trade-offs which need to be accounted for in marine planning. As marine resource extraction demands intensify, governments will need to take a more proactive approach to resolving these trade-offs, and studies such as this will be required as the evidential foundation for future seascape planning.


Assuntos
Conservação dos Recursos Naturais , Animais , Pesqueiros , Humanos , Modelos Estatísticos , Pectinidae , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA