Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116250, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552387

RESUMO

Forests emit a large amount of biogenic volatile organic compounds (BVOCs) in response to biotic and abiotic stress. Despite frequent occurrence of large forest fires in recent years, the impact of smoke stress derived from these forest fires on the emission of BVOCs is largely unexplored. Thus, the aims of the study were to quantify the amount and composition of BVOCs released by two sub-tropical tree species, Cunninghamia lanceolata and Schima superba, in response to exposure to smoke. Physiological responses and their relationship with BVOCs were also investigated. The results showed that smoke treatments significantly (p < 0.001) promoted short-term release of BVOCs by C. lanceolata leaves than S. superba; and alkanes, olefins and benzene homologs were identified as major classes of BVOCs. Both C. lanceolata and S. superba seedlings showed significant (p < 0.005) physiological responses after being smoke-stressed where photosynthetic rate remained unaffected, chlorophyll content greatly reduced and Activities of anti-oxidant enzymes and the malondialdehyde content generally increased with the increase in smoke concentration. Activities of anti-oxidant enzymes showed mainly positive correlations with the major BVOCs. In conclusion, the release of BVOCs following smoke stress is species-specific and there exists a link between activities of antioxidant enzymes and BVOCs released. The findings provide insight about management of forest fires in order to control excessive emission of smoke that would trigger increased release of BVOCs.


Assuntos
Compostos Orgânicos Voláteis , Incêndios Florestais , Árvores , Antioxidantes , Fumar
2.
BMC Plant Biol ; 23(1): 92, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782117

RESUMO

BACKGROUND: Studies on intra-specific variability in leaf functional traits is important to evaluate adaptation of the species to predicted climate change, and to develop long-term conservation strategy. The main objectives were to investigate the relationship between the functional traits leaves and C, N, P stoichiometry of Chinese fir from different geographical provenances and their relationship with the main environmental factors of provenance. RESULTS: In this study, we measured 12 leaf functional traits on 36-year-old Cunninghamia lanceolata trees from 13 provenances. Analysis of variance (ANOVA) was performed to examine the variability. Redundancy analysis (RA) was computed to examine the relationship between geo-climatic factors of provenance origin and leaf functional traits while Pearson's correlation coefficient was computed to assess inter-trait correlations. The results showed statistically significant differences (P < 0.01) in intraspecific leaf traits among provenances, except leaf P content. The relationships among leaf traits are consistent with the general trend observed in the leaf economic spectrum. Mean annual temperature appeared to be a key factor that influences intraspecific leaf traits variability compared to mean annual precipitation. CONCLUSION: These results provide useful insights about adaptation of leaf trait of Chinese fir in a changing climatic condition. Thus, our findings shed light on the importance of interspecific trait variability in Chinese fir and the potential effect of climate change.


Assuntos
Cunninghamia , Cunninghamia/genética , Folhas de Planta/genética , Árvores , Geografia , Fenótipo
3.
J Environ Manage ; 345: 118793, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619380

RESUMO

To identify possible dominating processes involved in soil microbial community assembly, dissolved organic matter (DOM) and multi-nutrient cycling (MNC) interactions and contribute to understanding of climate change effects on these important cycles, we investigated the interaction of soil chemistry, DOM components and microbial communities in five vegetation zones - ranging from evergreen broad-leaved forest to alpine meadow - along an elevation gradient of 290-1960 m in the Wuyi Mountains, Fujian Province, China. Soil DOM composition and microbial community assembly were characterized using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and Illumina MiSeq high-throughput sequencing, respectively. Sloan's neutral model and the modified stochasticity ratio were used to infer community assembly processes. Key microbial drivers of the soil MNC index were identified from partial least squares path models. Our results showed that soil DOM composition is closely related to the vegetation types along an elevation gradient, the structure and composition of the microbial community, and soil nutrient status. Overall, values of the double bond equivalent (DBE), modified aromaticity index (AImod) increased, and H/C ratio and molecular lability boundary (MLBL) percentage decreased with elevation. Lignins/CRAM-like structures compounds dominated soil DOM in each vegetation type and its relative abundance decreased with elevation. Aliphatic/protein and lipids components also decreased, but the relative abundance of aromatic structures and tannin increased with elevation. The alpha diversity index of soil bacteria gradually decreased with elevation, with deterministic processes dominating the microbial community assembly in the highest elevation zone. Bacterial communities were conducive to the decomposition of labile degradable DOM compounds (H/C ≥ 1.5) at low elevation. In the cooler and wetter conditions at higher-elevation sites the relative abundance of potentially resistant soil DOM components (H/C < 1.5) gradually increased. Microbial community diversity and composition were important predictors of potential soil nutrient cycling. Although higher elevation sites have higher nutrient cycling potential, soil DOM was assessed to be a more stable carbon store, with apparent lower lability and bioavailability than at lower elevation sites. Overall, this study increases understanding of the potential linkage between soil microbial community, multiple nutrient cycling and DOM fate in subtropical mountain ecosystems that can help predict the effect of climate change on soil carbon sequestration and thus inform ecosystem management.


Assuntos
Microbiota , Solo , Solo/química , Matéria Orgânica Dissolvida , Florestas , China
4.
BMC Plant Biol ; 21(1): 525, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758730

RESUMO

BACKGROUND: Phosphorus is one of the essential elements for plant growth and development, but available phosphorus (Pi) content in many soil types is low. As a fast-growing tree species for timber production, Chinese fir is in great demand of Pi, and the lack of Pi in soil restricts the increase of productivity of Chinese fir plantation. Root morphology and the synthesis and secretion of organic acids play an important role in the uptake of phosphorus, but the molecular mechanisms of Chinese fir root responses to Pi deficiency are largely unexplored. In this study, seedlings of Yang 061 clone were grown under three Pi supply levels (0, 5 and 10 mg·L-1 P) and morphological attributes, organic acid content and enzyme activity were measured. The transcriptome data of Chinese fir root system were obtained and the expression levels of phosphorus responsive genes and organic acid synthesis related genes on citric acid and glyoxylate cycle pathway were determined. RESULTS: We annotated 50,808 Unigenes from the transcriptome of Chinese fir roots. Among differentially expressed genes, seven genes of phosphate transporter family and 17 genes of purple acid phosphatase family were up-regulated by Pi deficiency, two proteins of SPX domain were up-regulated and one was down-regulated. The metabolic pathways of the citric acid and glyoxylate cycle pathway were mapped, and the expression characteristics of the related Unigenes under different phosphorus treatments were analyzed. The genes involved in malic acid and citric acid synthesis were up-regulated, and the activities of the related enzymes were significantly enhanced under long-term Pi stress. The contents of citric acid and malic acid in the roots of Chinese fir increased after 30 days of Pi deficiency. CONCLUSION: Chinese fir roots showed increased expression of genes related with phosphorus starvation, citrate and malate synthesis genes, increased content of organic acids, and enhanced activities of related enzymes under Pi deficiency. The results provide a new insight for revealing the molecular mechanism of adaption to Pi deficiency and the pathway of organic acid synthesis in Chinese fir roots.


Assuntos
Cunninghamia/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Ácido Cítrico/metabolismo , Cunninghamia/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Malatos/metabolismo , Redes e Vias Metabólicas , Doenças das Plantas/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
5.
Ecotoxicol Environ Saf ; 219: 112359, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044312

RESUMO

Cadmium (Cd) is one of the most toxic environmental pollutants affecting the growth and reproduction of various plants. Analysis of the biological adaptation and tolerance mechanisms of the hyperaccumulator Erigeron annuus to Cd stress may help identify new plant species for phytoremediation and in optimizing the process. This study is to the first to analyze the molecular composition and diversity of dissolved organic matter (DOM) secreted by roots using FT-ICR MS, and multiple physiological and biochemical indexes of E. annuus seedlings grown in solutions containing 0-200 Cd µmol L-1. The results showed that E. annuus had strong photosynthetic adaptation and protection ability under Cd stress. Cd was immobilized or compartmentalized by cell walls and vacuoles in the plant, thus alleviating Cd stress. Activation of anti-oxidation defense mechanisms also played an important role in alleviating or eliminating Cd toxicity in E. annuus. High Cd stress promoted production of a higher proportion of new molecules in DOM secreted by E. annuus roots compared to low Cd stress. DOM secreted by roots contributed to plant resistance to Cd-induced stress via producing more carbohydrates, aromatic structures and tannins. Results indicate the mechanisms underpinning the potential use of E. annuus as a phytoremediator in environments with moderate Cd pollution.


Assuntos
Biodegradação Ambiental , Cádmio/toxicidade , Erigeron/fisiologia , Poluentes do Solo/toxicidade , Tolerância a Medicamentos , Exsudatos e Transudatos , Oxirredução , Raízes de Plantas/crescimento & desenvolvimento , Plantas , Plântula
6.
Ecotoxicol Environ Saf ; 216: 112179, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33798869

RESUMO

Cadmium (Cd), a heavy metal element has strong toxicity to living organisms. Excessive Cd accumulation directly affects the absorption of mineral elements, inhibits plant tissue development, and even induces mortality. Populus × canadensis 'Neva', the main afforestation variety planted widely in northern China, was a candidate variety for phytoremediation. However, the genes relieving Cd toxicity and increasing Cd tolerance of this species were still unclear. In this study, we employed transcriptome sequencing on two Cd-treated cuttings to identify the key genes involved in Cd stress responses of P. × canadensis 'Neva' induced by 0 (CK), 10 (C10), and 20 (C20) mg/L Cd(NO3)2 4H2O. We discovered a total of 2,656 (1,488 up-regulated and 1,168 down-regulated) and 2,816 DEGs (1,470 up-regulated and 1,346 down-regulated) differentially expressed genes (DEGs) between the CK vs C10 and CK vs C20, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses in response to the Cd stress indicated that many DEGs identified were involved in the catalytic activity, the oxidoreductase activity, the transferase activity, and the biosynthesis of secondary metabolites. Based on the enrichment results, potential candidate genes were identified related to the calcium ion signal transduction, transcription factors, the antioxidant defense system, and transporters and showed divergent expression patterns under the Cd stress. We also validated the reliability of transcriptome data with the real-time PCR. Our findings deeper the understanding of the molecular responsive mechanisms of P. × canadensis 'Neva' on Cd tolerance and further provide critical resources for phytoremediation applications.

7.
Ecotoxicol Environ Saf ; 207: 111308, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931972

RESUMO

Pogonatherum crinitum is a promising lead (Pb) hyperaccumulator; however, the effects of Pb contamination on P. crinitum rhizosphere soil enzymatic activities and microbial composition remain largely unexplored. Thus, an indoor experiment was conducted by cultivating P. crinitum seedlings and exposing them to four Pb concentrations (0, 1,000, 2000 and 3000 mg/kg Pb). Protease, urease, acid phosphatase and invertase activities were determined using standard methods while soil bacterial composition was determined by 16 S rDNA sequencing. The results showed that rhizosphere soil acid phosphatase activity significantly increased with increasing Pb concentration, while urease activity was significantly greater in rhizosphere soil contaminated with 1000 and 2000 mg/kg than in the control. There was a clear shift in bacterial composition during phytoremediation by P. crinitum. Compared to the control, Bacteroidetes was more abundant in all Pb-contaminated soils, Actinobacteria was more abundant in 1000 mg/kg Pb-treated soil, and Firmicutes was more abundant in 3000 mg/kg Pb-treated soil. Positive correlations were observed between dominant bacterial phyla and soil enzyme activities. Metabolic pathways, such as ABC transporter, quinine reductase, and ATP-binding protein were significantly increased in rhizosphere soil bacteria with Pb contamination. In conclusion, Pb contamination differentially influenced the activities of rhizosphere soil enzymes, specifically increasing acid phosphatase and urease activities, and alters the dominance of soil bacteria through up-regulation of genes related to some metabolic pathways. The strong correlations between dominant bacterial phyla and enzymatic activities suggest synergetic effects on the growth of P. crinitum during Pb contamination.


Assuntos
Bioacumulação , Chumbo/toxicidade , Poaceae/efeitos dos fármacos , Poaceae/enzimologia , Rizosfera , Microbiologia do Solo , Poluentes do Solo/toxicidade , Fosfatase Ácida/metabolismo , Actinobacteria/efeitos dos fármacos , Actinobacteria/enzimologia , Biodegradação Ambiental , Chumbo/metabolismo , Peptídeo Hidrolases/metabolismo , Poaceae/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Urease/metabolismo
8.
Breed Sci ; 71(5): 550-563, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35087319

RESUMO

Cold stress is a major abiotic factor that affects plant growth and geographical distribution. Pinus sibirica is extremely frigostable tree species. To understand the molecular mechanisms of cold tolerance by P. sibirica, physiological responses were analyzed and transcriptome profiling was conducted to the plants treated by cold stress. The physiological data showed that membrane permeability relative conductivity (REC), reactive oxygen species (ROS), malonaldehyde (MDA) content, peroxidase (POD) and catalase (CAT) activity, soluble sugar, soluble protein and proline contents were increased significantly (p < 0.05) in response to cold stress. Transcriptome analysis identified a total of 871, 1397 and 872 differentially expressed genes (DEGs) after cold treatment for 6 h, 24 h and 48 h at -20°C, respectively. The signaling pathway mediated by Ca2+ as a signaling molecule and abscisic acid pathways were the main cold signal transduction pathways in P. sibirica. The APETALA2/Ethylene-Responsive Factor (AP2/ERF) and MYB transcription factor families also play an important role in the transcriptional regulation of P. sibirica. In addition, many genes related to photosynthesis were differentially expressed under cold stress. We also validated the reliability of transcriptome data with quantitative real-time PCR. This study lays the foundation for understanding the molecular mechanisms related to cold responses in P. sibirica.

9.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830294

RESUMO

The NAC (NAM, ATAF and CUC) gene family plays a crucial role in the transcriptional regulation of various biological processes and has been identified and characterized in multiple plant species. However, genome-wide identification of this gene family has not been implemented in Juglans mandshurica, and specific functions of these genes in the development of fruits remain unknown. In this study, we performed genome-wide identification and functional analysis of the NAC gene family during fruit development and identified a total of 114 JmNAC genes in the J. mandshurica genome. Chromosomal location analysis revealed that JmNAC genes were unevenly distributed in 16 chromosomes; the highest numbers were found in chromosomes 2 and 4. Furthermore, according to the homologues of JmNAC genes in Arabidopsis thaliana, a phylogenetic tree was constructed, and the results demonstrated 114 JmNAC genes, which were divided into eight subgroups. Four JmNAC gene pairs were identified as the result of tandem duplicates. Tissue-specific analysis of JmNAC genes during different developmental stages revealed that 39 and 25 JmNAC genes exhibited upregulation during the mature stage in walnut exocarp and embryos, indicating that they may serve key functions in fruit development. Furthermore, 12 upregulated JmNAC genes were common in fruit ripening stage in walnut exocarp and embryos, which demonstrated that these genes were positively correlated with fruit development in J. mandshurica. This study provides new insights into the regulatory functions of JmNAC genes during fruit development in J. mandshurica, thereby improving the understanding of characteristics and evolution of the JmNAC gene family.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Genes de Plantas , Juglans/crescimento & desenvolvimento , Juglans/genética , Família Multigênica , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Transcriptoma/genética , Cromossomos de Plantas/genética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Filogenia , Desenvolvimento Vegetal/genética , Regulação para Cima/genética
10.
Int J Mol Sci ; 22(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34639038

RESUMO

Chokecherry (Padus virginiana L.) is an important landscaping tree with high ornamental value because of its colorful purplish-red leaves (PRL). The quantifications of anthocyanins and the mechanisms of leaf color change in this species remain unknown. The potential biosynthetic and regulatory mechanisms and the accumulation patterns of anthocyanins in P. virginiana that determine three leaf colors were investigated by combined analysis of the transcriptome and the metabolome. The difference of chlorophyll, carotenoid and anthocyanin content correlated with the formation of P. virginiana leaf color. Using enrichment and correlation network analysis, we found that anthocyanin accumulation differed in different colored leaves and that the accumulation of malvidin 3-O-glucoside (violet) and pelargonidin 3-O-glucoside (orange-red) significantly correlated with the leaf color change from green to purple-red. The flavonoid biosynthesis genes (PAL, CHS and CHI) and their transcriptional regulators (MYB, HD-Zip and bHLH) exhibited specific increased expression during the purple-red periods. Two genes encoding enzymes in the anthocyanin biosynthetic pathway, UDP glucose-flavonoid 3-O-glucosyl-transferase (UFGT) and anthocyanidin 3-O-glucosyltransferase (BZ1), seem to be critical for suppressing the formation of the aforesaid anthocyanins. In PRL, the expression of the genes encoding for UGFT and BZ1 enzymes was substantially higher than in leaves of other colors and may be related with the purple-red color change. These results may facilitate genetic modification or selection for further improvement in ornamental qualities of P. virginiana.


Assuntos
Antocianinas/biossíntese , Pigmentação , Folhas de Planta/metabolismo , Prunus/fisiologia , Vias Biossintéticas , Clorofila/biossíntese , Cor , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metaboloma , Metabolômica/métodos , Pigmentação/genética , Folhas de Planta/genética , Transcriptoma
11.
BMC Plant Biol ; 20(1): 354, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727357

RESUMO

BACKGROUND: The non-structural carbohydrates (NSCs), carbon (C), nitrogen (N), and phosphorus (P) are important energy source or nutrients for all plant growth and metabolism. To persist in shaded understory, saplings have to maintain the dynamic balance of carbon and nutrients, such as leaf NSCs, C, N and P. To improve understanding of the nutrient utilization strategies between shade-tolerant and shade-intolerant species, we therefore compared the leaf NSCs, C, N, P in response to shade between seedlings of shade-tolerant Schima superba and shade-intolerant Cunninghamia lanceolate. Shading treatments were created with five levels (0, 40, 60, 85, 95% shading degree) to determine the effect of shade on leaf NSCs contents and C:N:P stoichiometry characteristics. RESULTS: Mean leaf area was significantly larger under 60% shading degree for C. lanceolata while maximum mean leaf area was observed under 85% shading degree for S. superba seedlings, whereas leaf mass per area decreased consistently with increasing shading degree in both species. In general, both species showed decreasing NSC, soluble sugar and starch contents with increasing shading degree. However shade-tolerant S. superba seedlings exhibited higher NSC, soluble sugar and starch content than shade-intolerant C. lanceolate. The soluble sugar/starch ratio of C. lanceolate decreased with increasing shading degree, whereas that of S. superb remained stable. Leaf C:N ratio decreased while N:P ratio increased with increasing shading degree; leaf C:P ratio was highest in 60% shading degree for C. lanceolata and in 40% shading degree for S. superba. CONCLUSION: S. superba is better adapted to low light condition than C. lanceolata through enlarged leaf area and increased carbohydrate reserves that allow the plant to cope with low light stress. From mixed plantation viewpoint, it would be advisable to plant S. superba later once the canopy of C. lanceolata is well developed but allowing enough sunlight.


Assuntos
Cunninghamia/fisiologia , Folhas de Planta/fisiologia , Theaceae/fisiologia , Metabolismo dos Carboidratos , Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Folhas de Planta/anatomia & histologia , Plântula/fisiologia , Amido/metabolismo , Luz Solar , Árvores
12.
BMC Plant Biol ; 20(1): 545, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33287710

RESUMO

BACKGROUND: Under natural conditions, soil nutrients are heterogeneously distributed, and plants have developed adaptation strategies to efficiently forage patchily distributed nutrient. Most previous studies examined either patch strength or patch size separately and focused mainly on root morphological plasticity (increased root proliferation in nutrient-rich patch), thus the effects of both patch strength and size on morphological and physiological plasticity are not well understood. In this study, we examined the foraging strategy of Neyraudia reynaudiana (Kunth) Keng ex Hithc, a pioneer grass colonizing degraded sites, with respect to patch strength and size in heterogeneously distributed phosphorus (P), and how foraging patchily distributed P affects total plant biomass production. Plants were grown in sand-culture pots divided into ½, », 1/6 compartments and full size and supplied with 0 + 0/30, 0 + 7.5/30 and 7.5 + 0/30 mg P/kg dry soil as KH2PO4 or 0 + 15/15, 0 + 18.5/ 18.5, 7.5 + 15/15 mg kg - 1 in the homogenous treatment. The first amount was the P concentration in the central region, and that the second amount was the P concentration in the outer parts of the pot. RESULTS: After 3 months of growth under experimental conditions, significantly (p < 0.05) high root elongation, root surface area, root volume and average root diameter was observed in large patches with high patch strength. Roots absorbed significantly more P in P-replete than P-deficient patches. Whole plant biomass production was significantly higher in larger patches with high patch strength than small patches and homogeneous P distribution. CONCLUSION: The result demonstrates that root morphological and physiological plasticity are important adaptive strategies for foraging patchily distributed P and the former is largely determined by patch strength and size. The results also establish that foraging patchily distributed P resulted in increased total plant biomass production compared to homogeneous P distribution.


Assuntos
Adaptação Fisiológica/fisiologia , Biomassa , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Poaceae/metabolismo , Solo/química , Algoritmos , Análise Multivariada , Nutrientes/análise , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Fatores de Tempo
13.
Sci Total Environ ; 926: 171943, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527546

RESUMO

Monoculture plantations in China, characterized by the continuous cultivation of a single species, pose challenges to timber accumulation and understory biodiversity, raising concerns about sustainability. This study investigated the impact of continuous monoculture plantings of Chinese fir (Cunninghamia lanceolata [Lamb.] Hook.) on soil properties, dissolved organic matter (DOM), and microorganisms over multiple generations. Soil samples from first to fourth-generation plantations were analyzed for basic chemical properties, DOM composition using Fourier transform ion cyclotron resonance mass spectrometry, and microorganisms via high-throughput sequencing. Results revealed a significant decline in nitrate nitrogen content with successive rotations, accompanied by an increase in easily degradable compounds like carbohydrates, aliphatic/proteins, tannins, Carbon, Hydrogen, Oxygen and Nitrogen- (CHON) and Carbon, Hydrogen, Oxygen and Sulfur- (CHOS) containing compounds. However, the recalcitrant compounds, such as lignin and carboxyl-rich alicyclic molecules (CRAMs), condensed aromatics and Carbon, Hydrogen and Oxygen- (CHO) containing compounds decreased. Microorganism diversity, abundance, and structure decreased with successive plantations, affecting the ecological niche breadth of fungal communities. Bacterial communities were strongly influenced by DOM composition, particularly lignin/CRAMs and tannins. Continuous monoculture led to reduced soil nitrate, lignin/CRAMs, and compromised soil quality, altering chemical properties and DOM composition, influencing microbial community assembly. This shift increased easily degraded DOM, accelerating soil carbon and nitrogen cycling, ultimately reducing soil carbon sequestration. From environmental point of view, the study emphasizes the importance of sustainable soil management practices in continuous monoculture systems. Particularly the findings offer valuable insights for addressing challenges associated with monoculture plantations and promoting long-term ecological sustainability.


Assuntos
Cunninghamia , Microbiota , Matéria Orgânica Dissolvida , Nitratos/análise , Lignina/metabolismo , Taninos/análise , Taninos/metabolismo , Solo/química , Compostos Orgânicos/análise , Compostos de Enxofre/metabolismo , Nitrogênio/análise , Carbono/análise , Hidrogênio/análise , Oxigênio/análise
14.
PLoS One ; 19(3): e0298918, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38451964

RESUMO

This study, conducted in China in November 2020, was aimed at exploring the variations in growth traits among different provenances and families as well as to select elite materials of Juglans mandshurica. Thus, seeds of 44 families from six J. mandshurica provenances in Heilongjiang and Jilin provinces were sown in the nursery and then transplanted out in the field. At the age of 5 years, seven growth traits were assessed, and a comprehensive analysis was conducted as well as selection of provenance and families. Analysis of variance revealed statistically significant (P < 0.01) differences in seven growth traits among different provenances and families, thereby justifying the pursuit of further breeding endeavors. The genetic coefficient of variation (GCV) for all traits ranged from 5.44% (branch angle) to 21.95% (tree height) whereas the phenotypic coefficient of variation (PCV) ranged from 13.74% (tapering) to 38.50% (branch number per node), indicating considerable variability across the traits. Further, all the studied traits except stem straightness degree, branch angle and branch number per node, showed high heritability (Tree height, ground diameter, mean crown width and tapering, over 0.7±0.073), indicating that the variation in these traits is primarily driven by genetic factors. Correlation analysis revealed a strong positive correlation (r > 0.8) between tree height and ground diameter (r = 0.86), tree height and mean crown width (r = 0.82), and ground diameter and mean crown width (r = 0.83). This suggests that these relationships can be employed for more precise predictions of the growth and morphological characteristics of trees, as well as the selection of superior materials. There was a strong correlation between temperature factors and growth traits. Based on the comprehensive scores in this study, Sanchazi was selected as elite provenance. Using the top-percentile selection criteria, SC1, SC8, DJC15, and DQ18 were selected as elite families. These selected families exhibit genetic gains of over 10% in tree height, ground diameter and mean crown width, signifying their significant potential in forestry for enhancing timber production and reducing production cycles, thereby contributing to sustainable forest management. In this study, the growth traits of J. mandshurica were found to exhibit stable variation, and there were correlations between these traits. The selected elite provenance and families of J. mandshurica showed faster growth, which is advantageous for the subsequent breeding and promotion of improved J. mandshurica varieties.


Assuntos
Juglans , Juglans/genética , Melhoramento Vegetal , Árvores , Florestas , China
15.
Chemosphere ; 312(Pt 1): 137259, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36400192

RESUMO

The moisture content of combustible material on the forest floor is constantly changing due to environmental factors, which have a direct impact on the composition and emission intensity of particulate matter released during fire. In this study, an indoor biomass combustion analysis device was used to analyze the emission characteristics of fine particulate matter (PM2.5) from combustion of herbaceous combustible materials with different moisture contents (0%, 15%, and 30%). The composition of inorganic elements in PM2.5 (Zn, K, Mg, Ca, and other 13 measurable elements) were determined by inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the PM2.5 emission factor increased significantly with the increase of moisture content of combustible materials in the range of 11.63 ± 0.55 for dry samples to 36.71 ± 1.21 g/kg for samples with 30% moisture content. The main elemental components of PM2.5 were K, Zn, Ca, Mg, and Na and K, Ca, Mg, and Na emission factors increased with the increase of moisture content of combustibles. The proportion of macronutrients in PM2.5 released by combustion of each herb increased as the moisture content increased, but the proportion of trace elements gradually decreased. There was a good correlation between elemental composition of PM2.5 and that of herbaceous combustibles. The results provide evidence that the moisture content of combustible materials has a significant effect on the emission of inorganic elements in particulate matter, and hence cautions should be exercised during fuel reduction treatments, such as early prescribed fire.


Assuntos
Poluentes Atmosféricos , Incêndios , Material Particulado/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Florestas
16.
Sci Total Environ ; 841: 156772, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724788

RESUMO

Emission of particulate matter (PM) during forest fires is a major source of air pollution and hence purification of atmospheric pollution has gained increasing importance. Trees can absorb polluting gases and fine particles by their leaves from the atmosphere and act as a sustainable air purification filter. However, the capture efficiency varies among tree species; thus exploring the ability of forest trees to capture smoke PM released during forest fires provides a basis for assessing net emissions from forest fires and the impact of smoke on forest ecosystems. In this study, the main afforestation tree species, Cunninghamia lanceolata (Lamb.) Hook, and a fire-resistant tree species, Schima superba Gardn.et Champ, in southern China were exposed to different smoke concentrations by simulating forest fire. The amount of PM per unit leaf area, absorption of nutrient element, leaf surface characteristics and antioxidant enzyme activities were determined. The main findings were: (1) The total quantity of PM captured by unit leaf area (µg·cm-2) of C. lanceolata was 28.25 ± 1.12, 30.52 ± 3.43 and 33.14 ± 3.00 in low, intermediate and high smoke concentrations, respectively. The corresponding values for S. superba was 5.96 ± 0.56, 10.09 ± 1.13 and 12.27 ± 0.39, respectively. (2) Both species had weak absorption capacity for inorganic ions in the PM. (3) The purification of smoke PM by leaves was mainly related to leaf surface roughness, where it was higher for C. lanceolata than S. superba leaves. (4) Smoke treatment positively affected the contents of chlorophyll and soluble protein as well as increased antioxidant enzyme activities. In conclusion, the findings highlight the importance of leaf structural characteristics in capturing smoke particles and C. lanceolata is better suited for purification of atmospheric smoke particles following forest fire than S. superba.


Assuntos
Poluentes Atmosféricos , Cunninghamia , Theaceae , Poluentes Atmosféricos/análise , Antioxidantes/análise , Ecossistema , Material Particulado/análise , Folhas de Planta/química , Fumaça/análise , Árvores
17.
Genes (Basel) ; 13(11)2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421836

RESUMO

To evaluate differences among 19 different ploidy hybrid poplar clones grown in northeast China, 21 traits related to growth traits and photosynthetic characteristics were detected and analyzed. Abundant phenotypic variations exist among and within populations, and these variations are the basis of forest tree genetic improvements. In this research, variance analysis showed that the traits except the net photosynthesis rate among the different ploidies and all the other traits exhibited significant differences among the ploidies or clones (p < 0.01). Estimation of phenotypic coefficients of variation, genotypic coefficients of variation, and repeatability is important for selecting superior materials. The larger the value, the greater the potential for material selection improvement. The repeatability of the different traits ranged from 0.88 to 0.99. The phenotypic and genotypic coefficients of variation of all the investigated traits ranged from 6.88% to 57.40% and from 4.85% to 42.89%, respectively. Correlation analysis showed that there were significant positive correlations between tree height, diameter, and volume. Transpiration rate, intercellular carbon dioxide concentration, and stomatal conductance were significantly positively correlated with each other but negatively correlated with instantaneous water use efficiency. Growth traits were weakly correlated with photosynthetic indexes. The rank correlation coefficient showed that most of the growth indicators reached a significant correlation level among different years (0.40-0.98), except 1-year-old tree height with 4-year-old tree height and 1-year-old ground diameter with 3-year-old tree height, which indicated the potential possibility for early selection of elite clones. Principal analysis results showed that the contribution rate of the first principal component was 46.606%, and 2-year-old tree height, 2-year-old ground diameter, 3-year-old tree height, 3-year-old ground diameter, 3-year-old diameter at breast height, 3-year-old volume, 4-year-old tree height, 4-year-old ground diameter, 4-year-old diameter at breast height, and 4-year-old volume showed higher vector values than other traits. With the method of multiple-trait comprehensive evaluation to evaluate clones, SX3.1, SY3.1, and XY4.2 were selected as elite clones, and the genetic gains of height, basal diameter, diameter at breast height, and volume of selected clones ranged from 12.85% to 64.87% in the fourth growth year. The results showed fundamental information for selecting superior poplar clones, which might provide new materials for the regeneration and improvement of forests in Northeast China.


Assuntos
Populus , Populus/genética , Fotossíntese/genética , Árvores , Poliploidia , China , Células Clonais
18.
Front Plant Sci ; 13: 795631, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222462

RESUMO

Pinus koraiensis, Pinus sibirica, and Pinus pumila are the major five-needle pines in northeast China, with substantial economic and ecological values. The phenotypic variation, environmental adaptability and evolutionary relationships of these three five-needle pines remain largely undecided. It is therefore important to study their genetic differentiation and evolutionary history. To obtain more genetic information, the needle transcriptomes of the three five-needle pines were sequenced and assembled. To explore the relationship of sequence information and adaptation to a high mountain environment, data on needle morphological traits [needle length (NL), needle width (NW), needle thickness (NT), and fascicle width (FW)] and 19 climatic variables describing the patterns and intensity of temperature and precipitation at six natural populations were recorded. Geographic coordinates of altitude, latitude, and longitude were also obtained. The needle morphological data was combined with transcriptome information, location, and climate data, for a comparative analysis of the three five-needle pines. We found significant differences for needle traits among the populations of the three five-needle pine species. Transcriptome analysis showed that the phenotypic variation and environmental adaptation of the needles of P. koraiensis, P. sibirica, and P. pumila were related to photosynthesis, respiration, and metabolites. Analysis of orthologs from 11 Pinus species indicated a closer genetic relationship between P. koraiensis and P. sibirica compared to P. pumila. Our study lays a foundation for genetic improvement of these five-needle pines and provides insights into the adaptation and evolution of Pinus species.

19.
Ecol Evol ; 12(1): e8539, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127042

RESUMO

The natural regeneration of native broadleaved species underneath forest monoculture plantations is important to recover ecosystem functions and to mitigate adverse environmental effects. To understand how seed rain and soil seed bank facilitate natural regeneration, we surveyed their density and composition in a monoculture Chinese fir plantation, a mixed Chinese fir-broadleaf plantation, and an adjacent natural broadleaved forest for two years in southern China. Twenty-eight species (16 families) were in seed rain, and 45 species (27 families) were in soil seed bank. Seed rain density did not differ significantly across stands; however, the number of taxa in seed rain was highest in the mixed plantation and lowest in the natural forest. Seed bank density was significantly higher in the mixed plantation than in the other stands (p < .05). The Sørensen similarity index of species composition between seed sources and aboveground vegetation were relatively low (<.50). The seeds of various native tree species were common in the seed bank of the plantations, indicating that seed rain and seed bank played an important role in native forest regeneration. We recommend that managers interested in sustainable forestry should take into consideration the presence of existing soil seed bank when developing their management strategies. In addition, with regard to forest regeneration process, we also recommend supplementation of the species composition by direct seeding or planting of desired species.

20.
Front Plant Sci ; 13: 850054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310631

RESUMO

Acer pseudosieboldianum (Pax) Komarov is an ornamental plant with prominent potential and is naturally distributed in Northeast China. Here, we obtained a chromosome-scale genome assembly of A. pseudosieboldianum combining HiFi and Hi-C data, and the final assembled genome size was 690.24 Mb and consisted of 287 contigs, with a contig N50 value of 5.7 Mb and a BUSCO complete gene percentage of 98.4%. Genome evolution analysis showed that an ancient duplication occurred in A. pseudosieboldianum. Phylogenetic analyses revealed that Aceraceae family could be incorporated into Sapindaceae, consistent with the present Angiosperm Phylogeny Group system. We further construct a gene-to-metabolite correlation network and identified key genes and metabolites that might be involved in anthocyanin biosynthesis pathways during leaf color change. Additionally, we identified crucial teosinte branched1, cycloidea, and proliferating cell factors (TCP) transcription factors that might be involved in leaf morphology regulation of A. pseudosieboldianum, Acer yangbiense and Acer truncatum. Overall, this reference genome is a valuable resource for evolutionary history studies of A. pseudosieboldianum and lays a fundamental foundation for its molecular breeding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA