Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
IEEE Sens J ; 19(9): 3431-3438, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31798350

RESUMO

Phased array MRI coils can increase sensitivity of superficial tissues owing to their proximity to the detection region. Deep-lying tissues, on the other hand, do not benefit to the same degree. Here we investigate the use of a localized cylindrically symmetric quadruple frequency resonator concatenated with a double frequency resonator to increase the longitudinal field-of-view (FOV) without compromising the spatial-resolution and detection sensitivity. These concatenated array coils work on the principle of a parametric amplification to provide wireless amplification of the locally detected NMR signal prior to inductively coupling the coil to an external pick-up loop with connection to the system receiver. When both the detectors are activated together, the effective range of both overlay to create a larger FOV enabling better identification of detectable regions. Furthermore, the in-vivo test of the concatenated detector provides a worst-case 5-fold SNR gain in regions separated from the cylindrical surface larger than its own diameter. This proposed approach of concatenated detector realization can be individually activated and manipulated to enlarge the sensitivity-enhanced region without sacrificing their individual performance. Compared to double frequency detectors, quadruple frequency detectors offer more flexibility in the choice of detector dimension, enabling multi-element concatenation over an extended FOV.

2.
J Magn Magn Mater ; 460: 424-431, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33981128

RESUMO

Ferrite-ferroelectric core-shell nanoparticles were prepared by deoxyribonucleic acid (DNA) assisted self-assembly and the strained mediated magneto-electric (ME) interactions between the ferroic phases were studied. The nanoparticle type and size were varied and the DNA linker sequence was also varied. Two kinds of particles, one with 600 nm barium titanate (BTO) core and 200 nm nickel ferrite (NFO) shell and another with 200 nm BTO core and 50 nm nickel cobalt ferrite (NCFO) shell were prepared. The particles were linked by three different oligomeric DNA containing 19, 18 or 30 base pairs. The core-shell structure was evident from electron microscopy and scanning microwave microscopy images. Films and disks of the core-shell particles were assembled in a magnetic field and used for measurements of low frequency ME voltage coefficient (MEVC) and magnet-dielectric effect. The MEVC data on films indicate that particles assembled with DNA with 30 base pairs exhibit the strongest ME coupling suggesting a more fully integrated heterogenous nanocomposite and the weakest interaction for DNA with 18 base pairs. These results indicate that the longer linker region in DNA is the key factor for forming better composites. This result may be due to the irregular shape of the nanoparticles. Longer DNA strands would be able to bridge better generating more linkages. Shorter strands would not able to bridge the irregularly shaped particles as well and therefore result in linkages and less heterogeneity in the composites.

3.
Magn Reson Imaging ; 63: 147-154, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31425798

RESUMO

In magnetic resonance imaging (MRI), acquisition speed is always an important issue. In this paper, we propose a promising technique to achieve parallel MRI (pMRI) on a single-channel spectrometer, using a novel Wireless Amplified Nuclear MR Detector (WAND) for spatial encoding in image reconstruction. For this, a planar structure double frequency WAND is designed and fabricated, where two of its frequencies - 'signal', ω1 and 'idler', ω2 are effectively utilized as two separate "channels" for accelerated acquisition. We provided a thorough background needed for the method and subsequently parallel imaging algorithms. Sum-of-Squares (SoS) reconstruction and GeneRalized Autocalibrating Partially Parallel Acquisition (GRAPPA) reconstruction are used to reconstruct as well as to analyze the SNR in the resulting images and validate our hypothesis. Experimental results using phantom datasets demonstrate that the proposed method of parallel imaging yield a better sensitivity for the combined images ('idler' + 'signal') than the sensitivity acquired for each individual image and thus significantly improving the reconstruction quality with optimal signal-to-noise ratio. We also demonstrated the achievable acceleration factor of this approach.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Algoritmos , Desenho de Equipamento , Humanos , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Espectroscopia de Ressonância Magnética , Imagens de Fantasmas , Sensibilidade e Especificidade , Razão Sinal-Ruído
4.
IEEE Trans Biomed Circuits Syst ; 13(2): 444-453, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30624224

RESUMO

This paper demonstrates the enlarged effective range for MRI sensitivity enhancement with a deformable catheter MRI coils integrated with a wirelessly powered amplifier. The expandable balloon wireless amplified nuclear magnetic resonance detector (WAND) is constructed on a copper-clad polyimide film to resonate at the first and second harmonics of the proton Larmor frequency at 7 Tesla. The WAND is then mounted on a balloon catheter system for easy delivery inside confined orifice. Upon reaching the region of interest, it is unfolded out of the sheath tube to increase its effective size. Magnetic resonance (MR) imaging experiments with and without the WAND are performed both in a water phantom and in a live rat to evaluate the WAND's sensitivity advantage. Expanded from a 3 mm diameter in its folded state, this deformable WAND can change its width by >100% in its inflated state to at least 6 mm, leading to a sensitive detection region extending to up to 20 mm in the transverse direction. When the deformable WAND is placed in an artery in the region of the kidney of a live rat, it could achieve at least a 10-fold SNR gain over images acquired by a standard external detector of 22 mm diameter, even though the region of interest is separated from the WAND's surface by a distance larger than the WAND's own width. The proposed expandable catheter WAND could significantly enlarge the effective range for MR sensitivity enhancement in-vivo, enabling versatile applications in interventional MRI.


Assuntos
Catéteres , Rim/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Tecnologia sem Fio , Animais , Simulação por Computador , Eletricidade , Modelos Animais , Imagens de Fantasmas , Ratos
5.
Rev Sci Instrum ; 90(1): 015004, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709188

RESUMO

A high-Q magnetoelectric (ME) gyrator consisting of a trilayer laminate of nickel-iron-based constant elasticity alloy (Ni-Fe-Cr) and lead zirconate titanate with a coil wound around it has been developed and systematically characterized. Highly efficient magneto-mechanical-electric conversion can be achieved by means of the combination contributions of high quality factors from individuals, and much energy can be transferred through the gyration device. Under an electromechanical resonance frequency of 54.04 kHz, experimental results show that maximum efficiency reaches as high as 88.5% under an extremely low input density of 3.31 µW/cm3 with an optimum load resistance of 9.6 kΩ and a magnetic bias of 66 Oe. Such a highly efficient ME gyrator with a high Q factor can be beneficial or degrade the design goals that are likely to be achievable for practical applications in compact power transfer electronic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA