RESUMO
This work reports on the development of borate- and methacrylate-polymer-coated zinc oxide nanoparticles (ZnOBM) via a plasma polymerization technique to replace the harmful conventional antiwear additive zinc dialkyl dithiophosphate (ZDDP) in automotive lubricants. Here, the tribochemistry across the interfaces formed between sliding ferrous surfaces and coated and uncoated ZnO nanoparticles is thoroughly studied from the perspective of elucidating the tribofilm formation, wear, and friction performance of a novel ZnOBM-based nanolubricant. Tribological tests conducted under a boundary lubrication regime revealed that oil formulations containing only ZnOBM nanoadditives and a mixture of ZnOBM with a low amount of ZDDP (350 ppm of P) significantly improve wear performance (up to 95%) compared to the base oil. Electrical contact resistance results acquired in situ during tribological tests demonstrated that lubricants containing ZnOBM nanoparticles at sliding interfaces undergo tribochemical reactions to form stable tribofilms that reduce friction and wear. Atomic force microscopy (AFM), X-ray absorption near-edge spectroscopy (XANES), and X-ray photoelectron spectroscopy (XPS) analysis revealed that ZnOBM nanoparticles, by themselves, form patchy interfacial tribofilms containing iron borate, boron oxide, and zinc oxide and lead to superior tribological performance. Interestingly, ZnOBM nanoparticles interact synergistically with ZDDP to form a hierarchical interface of boron-doped tribofilms, with zinc-iron polyphosphates at the surface and iron oxide, zinc and iron sulfides in the bulk. These encouraging results suggest the potential effective use of the ZnOBM nanoparticles to significantly reduce harmful levels of ZDDP (350 ppm) in the engine oil without compromising the antifriction and antiwear performance and to develop eco-friendly high-performance lubricant additives.
RESUMO
The extraction of active compounds from natural sources has shown to be an effective approach to drug discovery. However, the isolation and identification of natural products from complex extracts can be an arduous task. A novel approach to drug discovery is presented through the use of polymer screens functionalized with an l-lysine-d-alanine-d-alanine (Kaa) peptide to create new affinity capture mesh screen materials. The Kaa sequence is a well-characterized specific binding site for antibiotics that inhibit cell wall synthesis in Gram-positive bacteria. The detailed synthesis and characterization of these novel screen materials are presented in this work. Polypropylene mesh screens were first coated with a poly(acrylic acid) film by pulsed plasma polymerization. The synthesized Kaa peptide was then covalently attached to carboxylic acid groups through a condensation reaction. An analysis of captured compounds was performed in a rapid fashion with transmission-mode desorption electrospray ionization (TM-DESI) mass spectrometry. A proof of principle was demonstrated to show the ability of the novel affinity capture materials to select for a macrocyclic antibiotic, vancomycin, over a negative control compound, spectinomycin. With further development, this method may provide a rapid screening technique for new antibacterial compounds, for example, those extracted from natural product sources having a limited supply. Here, we show that the screen can capture vancomycin preferentially over spectinomycin in a spiked extract of tea leaves.
Assuntos
Antibacterianos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
In this study, we demonstrate that the protein binding capacity of a surface modified matrix-assisted laser desorption/ionization (MALDI) target can be increased significantly by architecturing the surface of the MALDI probe using gold microparticles. In the present approach, a MALDI target, initially modified via pulsed rf plasma deposition of an allyl amine polymer thin film, is subsequently architectured via reaction with 2-iminothiolane and surface attachment of gold microparticles. The modified probe is then exposed to thiolated biotin to introduce an avidin binding element on the surface of the gold beads. The protein binding capacity of this architectured target is compared with a similarly plasma polymer modified MALDI target that is directly biotinylated. Application of various surface concentrations of avidin to the two probes and MALDI-MS analysis of avidin contained in the solution removed from the probe reveals that saturation of the gold-particle architectured target occurs at a factor of 15-30 higher applied surface concentration, as compared with the unarchitectured target. Furthermore, MALDI-MS analysis of the avidin retained on the two probes reveals that the limit of detection is lowered by a factor of 15-20 on the gold-particle architectured target as compared with the unarchitectured target.
Assuntos
Alilamina/química , Ouro/química , Polímeros/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Avidina/análise , Avidina/química , Avidina/metabolismo , Biotinilação , Limite de Detecção , Propriedades de SuperfícieRESUMO
Solid-state nanopores have emerged as sensors for single molecules and these have been employed to examine the biophysical properties of an increasingly large variety of biomolecules. Herein we describe a novel and facile approach to precisely adjust the pore size, while simultaneously controlling the surface chemical composition of the solid-state nanopores. Specifically, nanopores fabricated using standard ion beam technology are shrunk to the requisite molecular dimensions via the deposition of highly conformal pulsed plasma generated thin polymeric films. The plasma treatment process provides accurate control of the pore size as the conformal film deposition depends linearly on the deposition time. Simultaneously, the pore and channel chemical compositions are controlled by appropriate selection of the gaseous monomer and plasma conditions employed in the deposition of the polymer films. The controlled pore shrinkage is characterized with high resolution AFM, and the film chemistry of the plasma generated polymers is analyzed with FTIR and XPS. The stability and practical utility of this new approach is demonstrated by successful single molecule sensing of double-stranded DNA. The process offers a viable new advance in the fabrication of tailored nanopores, in terms of both the pore size and surface composition, for usage in a wide range of emerging applications.
RESUMO
Titanium dioxide (TiO(2)) is a preferred catalyst for photocatalytic oxidation of many air pollutants. In an effort to enhance its photocatalytic activity, TiO(2) was modified by pulsed plasma treatment. In this work, TiO(2) nanoparticles, coated on a glass plate, were treated with a plasma discharge of hexafluoropropylene oxide (HFPO) gas. By appropriate adjustment of discharge conditions, it was discovered that the TiO(2) particles can be either directly fluorinated (Ti-F) or coated with thin perfluorocarbon films (C-F). Specifically, under relatively high power input, the plasma deposition process favored direct surface fluorination. The extent of Ti-F formation increased with increasing power input. In contrast, at lower average power inputs, perfluorocarbon films are deposited on the surface of the TiO(2) particles. The plasma surface modified TiO(2) nanoparticles were subsequently employed as catalysts in the photocatalytic oxidation of m-xylene in air, as carried out inside a batch reactor with closed loop constant gas circulation. Both types of modified TiO(2) were significantly more catalytically active than that of the unmodified particles. For example, the rate constant of m-xylene degradation was increased from 0.012 min(-1) with untreated TiO(2) to 0.074 min(-1) with fluorinated TiO(2). Although it is not possible to provide unequivocal reasons for this increased photocatalytic activity, it is noted that the plasma surface treatment converted the TiO(2) from hydrophilic to highly hydrophobic, which would provide more facile catalyst adsorption of the xylene from the flowing air. Also, based on literature reports, the use of fluorinated TiO(2) reduces electron-hole recombination rates, thus increasing the photocatalytic activity.
Assuntos
Luz , Nanopartículas/química , Gases em Plasma/química , Titânio/química , Xilenos/química , Xilenos/efeitos da radiação , Catálise/efeitos da radiação , Oxirredução/efeitos da radiação , Espectroscopia Fotoeletrônica , Padrões de Referência , Espectrofotometria Ultravioleta , Propriedades de Superfície/efeitos da radiação , Fatores de Tempo , Água/químicaRESUMO
Photocatalyzed titanium dioxide (TiO2) nanoparticles have been shown to eradicate cancer cells. However, the required in situ introduction of ultraviolet light limits the use of such a therapy in humans. In the present study the nonphotocatalytic anticancer effect of surface-functionalized TiO2 was examined. Nanoparticles bearing -OH, -NH(2), or -COOH surface groups were tested for their effect on in vitro survival of several cancer and control cell lines. The cells tested included B16F10 melanoma, Lewis lung carcinoma, JHU prostate cancer cells, and 3T3 fibroblasts. Cell viability was observed to depend on particle concentrations, cell types, and surface chemistry. Specifically, -NH(2) and -OH groups showed significantly higher toxicity than -COOH. Microscopic and spectrophotometric studies revealed nanoparticle-mediated cell membrane disruption leading to cell death. The results suggest that functionalized TiO2, and presumably other nanoparticles, can be surface-engineered for targeted cancer therapy.
Assuntos
Antineoplásicos/farmacologia , Titânio/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Nanopartículas , Propriedades de Superfície , Titânio/químicaRESUMO
An RF plasma discharge was employed to deposit thin polymeric films on drug particles. This study utilized acetylsalicylic acid (aspirin) crystals and allyl alcohol as polymerizable monomer for this new approach to controlling drug release rates. Release rates of coated and uncoated particles were measured in aqueous solution at a pH of 1.0. The drug release rates could be varied over wide ranges by appropriate control of the polymeric films. These controls included film composition, extent of polymer cross-linking and film thickness. A 360 degrees rotating plasma reactor was employed to provide effective agitation and mixing of the drug particles during the coating operation. The plasma discharge was operated in a pulsed mode to provide improved control of the polymer film compositions and, at the same time, minimize undesirable decomposition of drug molecules. Overall, the results obtained clearly indicate that the pulsed RF plasma coating process developed represents a viable, one-step, solventless route to controlled drug release.
Assuntos
Preparações de Ação Retardada/química , Preparações de Ação Retardada/metabolismo , Polímeros/química , Polímeros/metabolismo , Cápsulas , Cristalização , VolatilizaçãoRESUMO
Inorganic/organic nanocomposites consisting of surface functionalized barium titanate (BTO) nanoparticles covalently bonded to epoxy polymeric matrices are described. A plasma-enhanced CVD process was employed to functionalize the particle surfaces with reactive amine groups. Subsequently, these modified particles were reacted with an epoxide monomer to synthesize the final nanocomposites, containing particle loadings ranging from 1 to 5 weight percent. Control samples, containing unmodified BTO, were also synthesized under identical reaction conditions and particle loading. The resultant nanocomposites were characterized spectroscopically and microscopically, and their physical and thermal properties were evaluated. The results obtained reveal a more uniform distribution of the surface modified BTO in the composites relative to that observed with the unmodified particles. Additionally, the physical and thermal properties of the nanocomposites containing the plasma modified particles were determined to be significantly improved over that of the pure polymer or the composites containing the unmodified particles, for each level of loading employed in this study. In light of these improved properties, it appears that the surface modifications employed significantly improve the interfacial interactions between the inorganic particles and the organic matrices in these nanocomposites.
RESUMO
Adherence and growth rates of human aortic endothelial cells (HAEC) on plasma polymerized poly(vinylacetic acid) films were measured as functions of the surface density of --COOH groups and plasma deposited film thickness. Pulsed plasma polymerization was employed to produce films containing 3.6 to 9% --COOH groups, expressed as a percent of total carbon content. Endothelial cells exhibited increased cell adherence and proliferation with increasing --COOH surface densities. Additionally, and unexpectedly, cell growth was also dependent on the film thicknesses, which ranged from 25 to 200 nm. The results indicate that optimization of the functional group surface density and film thickness could produce significant enhancements in initial adhesion and subsequent growth of the HAEC cells.
Assuntos
Adesão Celular/fisiologia , Proliferação de Células , Células Endoteliais/fisiologia , Polímeros/química , Adsorção , Animais , Materiais Biocompatíveis/química , Células Cultivadas , Células Endoteliais/citologia , Fibronectinas/metabolismo , Humanos , Teste de Materiais , Microscopia de Força Atômica , Polivinil/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Fator de von Willebrand/metabolismoRESUMO
Implant-associated fibrotic capsule formation presents a major challenge for the development of long-term drug release microspheres and implantable sensors. Since material properties have been shown to affect in vitro cellular responses and also to influence short-term in vivo tissue responses, we have thus assumed that the type and density of surface chemical groups would affect the degree of tissue responses to microsphere implants. To test this hypothesis, polypropylene particles with different surface densities of -OH and -COOH groups, along with the polypropylene control (-CH2 groups) were utilized. The influence of functional groups and their surface densities on fibrotic reactions were analyzed using a mice subcutaneous implantation model. Our comparative studies included determination and correlation of the extents of fibrotic capsule formation, cell infiltration into the particles, and recruitment of CD11b+ inflammatory cells for all of the substrates employed. We have observed major differences among microspheres coated with different surface functionalities. Surfaces with -OH surface groups trigger the strongest responses, while -COOH-rich surfaces prompt the least tissue reactions. However, variation of the surface density of either functional group has a relatively minor influence on the extent of fibrotic tissue reactions. The present results show that surface functionality can be used as a powerful tool to alter implant-associated fibrotic reactions and, potentially, to improve the efficacy and function of drug-delivery microspheres, implantable sensors, and tissue-engineering scaffolds.
Assuntos
Reação a Corpo Estranho , Microesferas , Polipropilenos/química , Próteses e Implantes , Animais , Inflamação , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Propriedades de SuperfícieRESUMO
Implant-mediated fibrotic reactions are detrimental to the performance of encapsulated cells, implanted drug release devices, and sensors. To improve the implant function and longevity, recent research has emphasized the need for inducing alterations in cellular responses. Although material surface functional groups have been shown to be potent in affecting cellular activity in vitro and short-term in vivo responses, these groups appear to have little influence on long-term in vivo fibrotic reactions, possibly as a result of insufficient interactions between recruited host cells and functional groups on the implants. To maximize the influence of functionality on cells, and to mimic drug release microspheres, functionalized micron-sized particles were created and tested for their ability in modulating tissue responses to biomaterial implants. In this work, the surfaces of polypropylene particles were controllably coated with four different functional groups, specifically -OH, -NH(2), -CF(x), and -COOH, using a radio frequency glow discharge plasma polymerization technique. The effect of these surface functionalities on host tissue responses were then evaluated using a mice subcutaneous implantation model. Major differences were observed in contrasting tissue response to the different chemistries. Surfaces with -OH and -NH(2) surface groups induced the thickest fibrous capsule accompanied with the greatest cellular infiltration into the implants. In contrast, surfaces with -CF(x) and -COOH exhibited the least inflammatory/fibrotic responses and cellular infiltrations. The present results clearly demonstrate that, by increasing the available functionalized surface area and spatial distribution, the effect of surface chemistry on tissue reactivity can be substantially enhanced.
Assuntos
Reação a Corpo Estranho/imunologia , Próteses e Implantes , Animais , Antígenos CD11 , Contagem de Células , Movimento Celular , Fibrose/imunologia , Imuno-Histoquímica , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Polipropilenos/imunologia , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de SuperfícieRESUMO
A simple, direct route to preparation of surface immobilized hydrogel films is described. Specifically, low pressure RF pulsed plasma polymerization of 1-amino-2-propanol and 2-(ethylamino)ethanol monomers produced thin hydrogel films deposited on substrates located in the plasma reactor. The successful syntheses were carried out under plasma conditions which not only yield the hydrogel but are also sufficiently energetic to produce films strongly grafted to the substrates. The polymer films obtained exhibit the thermoresponsive property of hydrogels, as shown by film color change with temperature. Additional evidence for the phase transition properties of these films was obtained using water contact angle and capillary rise measurements. The plasma polymerization approach provides an unusually simple route to synthesis of hydrogels in which the films are pin-hole free and are of easily controlled thickness. An important added advantage, particularly for applications involving biomaterials, is the conformal property of the plasma generated polymer films. The results obtained suggest that this approach should be applicable to a variety of other monomers and, based on differences observed with the present two monomers, suggest synthesis of films which exhibit a range of phase transition temperatures.
RESUMO
Surface modification of MALDI probes is an attractive approach for combining bioaffinity isolation of targeted biomolecules with mass spectrometric analysis of the captured species. In this work, we demonstrate that a polymer thin film, produced by pulsed rf plasma polymerization of allylamine and deposited directly on a MALDI probe, can be subsequently biotinylated to develop a bioaffinity capture MALDI probe. The synthesis and characterization of the probe by XPS, FT-IR, and AFM is described, and the selective isolation of avidin from a three-component mixture of avidin, lysozyme, and cytochrome c is presented. These initial results offer encouragement for the further exploration of rf plasma polymer deposition as a novel approach for the development of on-probe affinity capture MALDI probes.
Assuntos
Materiais Revestidos Biocompatíveis/química , Polímeros/química , Proteínas/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Biotinilação , Ondas de Rádio , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
A bioresorbable, expandable poly(L-lactic acid) stent has been designed, based on a linear, continuous coil array principle, by which multiple furled lobes convert to a single lobe upon balloon expansion, without heating. Stent strength and compliance are sufficient to permit deployment by a conventional balloon angioplasty catheter. Several multiple lobe configurations were investigated, with expansion ratios ranging from 1.4 to 1.9 and expanded diameters ranging from 2.3 to 4.7 mm. Compression resistance of the expanded stent is dependent on fiber coil density and fiber ply. A range sufficient for endovascular service was obtained, with less than 4% elastic recoil in six day saline incubation studies. Surface plasma treatment with di(ethylene glycol) vinyl ether significantly reduced platelet adhesion in a 1 h porcine arteriovenous shunt model. Patency was maintained in one week implant studies in the porcine common femoral artery. However, a strong inflammatory response, and significant reduction of the vascular lumen were observed following two weeks implantation. The design principles and fabrication techniques for this bioresorbable stent are sufficiently versatile that a broad range of applications can be addressed. Much work remains to be done, including long-term evaluation of the inflammatory response, and of polymer degradation. The results of this study demonstrate the feasibility of expandable biodegradable stent design and deployment by conventional means.