RESUMO
Engineered p53 mutant mice are valuable tools for delineating p53 functions in tumor suppression and cancer therapy. Here, we have introduced the R178E mutation into the Trp53 gene of mice to specifically ablate the cooperative nature of p53 DNA binding. Trp53R178E mice show no detectable target gene regulation and, at first sight, are largely indistinguishable from Trp53-/- mice. Surprisingly, stabilization of p53R178E in Mdm2-/- mice nevertheless triggers extensive apoptosis, indicative of residual wild-type activities. Although this apoptotic activity suffices to trigger lethality of Trp53R178E ;Mdm2-/- embryos, it proves insufficient for suppression of spontaneous and oncogene-driven tumorigenesis. Trp53R178E mice develop tumors indistinguishably from Trp53-/- mice and tumors retain and even stabilize the p53R178E protein, further attesting to the lack of significant tumor suppressor activity. However, Trp53R178E tumors exhibit remarkably better chemotherapy responses than Trp53-/- ones, resulting in enhanced eradication of p53-mutated tumor cells. Together, this provides genetic proof-of-principle evidence that a p53 mutant can be highly tumorigenic and yet retain apoptotic activity which provides a survival benefit in the context of cancer therapy.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leucemia Mieloide Aguda/prevenção & controle , Linfoma/prevenção & controle , Mutação , Proteínas Proto-Oncogênicas c-mdm2/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Ciclo Celular , Modelos Animais de Doenças , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Linfoma/genética , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Tumorais CultivadasRESUMO
BACKGROUND: In vivo gene editing of somatic cells with CRISPR nucleases has facilitated the generation of autochthonous mouse tumors, which are initiated by genetic alterations relevant to the human disease and progress along a natural timeline as in patients. However, the long and variable, orthotopic tumor growth in inner organs requires sophisticated, time-consuming and resource-intensive imaging for longitudinal disease monitoring and impedes the use of autochthonous tumor models for preclinical studies. METHODS: To facilitate a more widespread use, we have generated a reporter mouse that expresses a Cre-inducible luciferase from Gaussia princeps (GLuc), which is secreted by cells in an energy-consuming process and can be measured quantitatively in the blood as a marker for the viable tumor load. In addition, we have developed a flexible, complementary toolkit to rapidly assemble recombinant adenoviruses (AVs) for delivering Cre recombinase together with CRISPR nucleases targeting cancer driver genes. RESULTS: We demonstrate that intratracheal infection of GLuc reporter mice with CRISPR-AVs efficiently induces lung tumors driven by mutations in the targeted cancer genes and simultaneously activates the GLuc transgene, resulting in GLuc secretion into the blood by the growing tumor. GLuc blood levels are easily and robustly quantified in small-volume blood samples with inexpensive equipment, enable tumor detection already several months before the humane study endpoint and precisely mirror the kinetics of tumor development specified by the inducing gene combination. CONCLUSIONS: Our study establishes blood-based GLuc monitoring as an inexpensive, rapid, high-throughput and animal-friendly method to longitudinally monitor autochthonous tumor growth in preclinical studies.
Assuntos
Copépodes , Neoplasias Pulmonares , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Copépodes/genética , Copépodes/metabolismo , Edição de Genes , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Neoplasias Pulmonares/genética , CamundongosRESUMO
Cancer development is driven by activated oncogenes and loss of tumor suppressors. While oncogene inhibitors have entered routine clinical practice, tumor suppressor reactivation therapy remains to be established. For the most frequently inactivated tumor suppressor p53, genetic mouse models have demonstrated regression of p53-null tumors upon p53 reactivation. While this was shown in tumor models driven by p53 loss as the initiating lesion, many human tumors initially develop in the presence of wild-type p53, acquire aberrations in the p53 pathway to bypass p53-mediated tumor suppression, and inactivate p53 itself only at later stages during metastatic progression or therapy. To explore the efficacy of p53 reactivation in this scenario, we used a reversibly switchable p53 (p53ERTAM) mouse allele to generate Eµ-Myc-driven lymphomas in the presence of active p53 and, after full lymphoma establishment, switched off p53 to model late-stage p53 inactivation. Although these lymphomas had evolved in the presence of active p53, later loss and subsequent p53 reactivation surprisingly activated p53 target genes triggering massive apoptosis, tumor regression, and long-term cure of the majority of animals. Mechanistically, the reactivation response was dependent on Cdkn2a/p19Arf, which is commonly silenced in p53 wild-type lymphomas, but became reexpressed upon late-stage p53 inactivation. Likewise, human p53 wild-type tumor cells with CRISPR-engineered switchable p53ERTAM alleles responded to p53 reactivation when CDKN2A/p14ARF function was restored or mimicked with Mdm2 inhibitors. Together, these experiments provide genetic proof of concept that tumors can respond, in an ARF-dependent manner, to p53 reactivation even if p53 inactivation has occurred late during tumor evolution.
Assuntos
Carcinogênese/genética , Terapia Genética/métodos , Linfoma/genética , Proteína Supressora de Tumor p53/genética , Células 3T3 , Animais , Apoptose , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Células HCT116 , Humanos , Linfoma/terapia , Camundongos , Proteína Supressora de Tumor p53/metabolismoRESUMO
Mutations in the p53 tumor suppressor gene are the most frequent genetic alteration in cancer and are often associated with progression from benign to invasive stages with metastatic potential. Mutations inactivate tumor suppression by p53, and some endow the protein with novel gain of function (GOF) properties that actively promote tumor progression and metastasis. By comparative gene expression profiling of p53-mutated and p53-depleted cancer cells, we identified ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) as a mutant p53 target gene, which functions as a uridine 5'-diphosphatase (UDPase) in the endoplasmic reticulum (ER) to promote the folding of N-glycosylated membrane proteins. A comprehensive pan-cancer analysis revealed a highly significant correlation between p53 GOF mutations and ENTPD5 expression. Mechanistically, mutp53 is recruited by Sp1 to the ENTPD5 core promoter to induce its expression. We show ENTPD5 to be a mediator of mutant p53 GOF activity in clonogenic growth, architectural tissue remodeling, migration, invasion, and lung colonization in an experimental metastasis mouse model. Our study reveals folding of N-glycosylated membrane proteins in the ER as a mechanism underlying the metastatic progression of tumors with mutp53 that could provide new possibilities for cancer treatment.
Assuntos
Retículo Endoplasmático/metabolismo , Metástase Neoplásica , Proteínas Oncogênicas/metabolismo , Pirofosfatases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/fisiologia , Animais , Apoptose , Calnexina/metabolismo , Calreticulina/metabolismo , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glicoproteínas/metabolismo , Glicosilação , Humanos , Masculino , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/fisiologia , Mutação , Invasividade Neoplásica , Prognóstico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fator de Transcrição Sp1/metabolismoRESUMO
Cancer-targeted therapies that inhibit oncogenic signaling often lead to resistance and recurrence. In a recent study, Dias et al. propose activating oncogenic pathways and inducing replication stress, resulting in cell death and tumor-suppressive mechanisms in colorectal cancer (CRC). This approach could spark a new wave of target discovery, and drug development and repurposing against cancer.
Assuntos
Transdução de Sinais , Animais , Humanos , Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/patologia , OncogenesRESUMO
At least 40% of human cancers are associated with aberrant ERK pathway activity (ERKp). Inhibitors targeting various effectors within the ERKp have been developed and explored for over two decades. Conversely, a substantial body of evidence suggests that both normal human cells and, notably to a greater extent, cancer cells exhibit susceptibility to hyperactivation of ERKp. However, this vulnerability of cancer cells remains relatively unexplored. In this review, we reexamine the evidence on the selective lethality of highly elevated ERKp activity in human cancer cells of varying backgrounds. We synthesize the insights proposed for harnessing this vulnerability of ERK-associated cancers for therapeutical approaches and contextualize these insights within established pharmacological cancer-targeting models. Moreover, we compile the intriguing preclinical findings of ERK pathway agonism in diverse cancer models. Lastly, we present a conceptual framework for target discovery regarding ERKp agonism, emphasizing the utilization of mutual exclusivity among oncogenes to develop novel targeted therapies for precision oncology.
RESUMO
Modulation of tumor suppressor activities may provide new opportunities for cancer therapy. Here we show that disruption of the gene Ppm1d encoding Wip1 phosphatase activated the p53 and p16 (also called Ink4a)-p19 (also called ARF) pathways through p38 MAPK signaling and suppressed in vitro transformation of mouse embryo fibroblasts (MEFs) by oncogenes. Disruption of the gene Cdkn2a (encoding p16 and p19), but not of Trp53 (encoding p53), reconstituted cell transformation in Ppm1d-null MEFs. In vivo, deletion of Ppm1d in mice bearing mouse mammary tumor virus (MMTV) promoter-driven oncogenes Erbb2 (also called c-neu) or Hras1 impaired mammary carcinogenesis, whereas reduced expression of p16 and p19 by methylation-induced silencing or inactivation of p38 MAPK correlated with tumor appearance. We conclude that inactivation or depletion of the Wip1 phosphatase with resultant p38 MAPK activation suppresses tumor appearance by modulating the Cdkn2a tumor-suppressor locus.
Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Neoplasias Mamárias Experimentais/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Fosfoproteínas Fosfatases/antagonistas & inibidores , Proteína Supressora de Tumor p14ARF/metabolismo , Animais , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas de Neoplasias/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
This study looked at optimizing the composition of precursors for yttria nanopowder glycine-nitrate self-propagating high-temperature synthesis (SHS). Based on thermodynamic studies, six different precursor compositions were selected, including with excesses of either oxidant or fuel. The powders from the precursors of all selected compositions were highly dispersed and had specific surface areas ranging from 22 to 57 m2/g. They were consolidated by hot pressing (HP) with lithium-fluoride sintering additive and subsequent hot isostatic pressing (HIP). The 1 mm thick HPed ceramics had transmittance in the range of 74.5% to 80.1% @ 1µm, which was limited by optical inhomogeneity due to incomplete evaporation of the sintering additive. Two-stage HIP significantly improves optical homogeneity of the ceramics. It was shown that an excess of oxidizer in the precursor decreases the powders' agglomeration degree, which forms large pore clusters in the ceramics.
RESUMO
BACKGROUND: Impaired p53 function is one of the central molecular features of a tumor cell and even a partial reduction in p53 activity can increase the cancer risk in mice and men. From a therapeutic perspective it is noteworthy that tumor cells often become addicted to the absence of p53 providing a rationale for developing p53 reactivating compounds to treat cancer patients. Unfortunately, many of the compounds that are currently undergoing preclinical and clinical testing fail to fully reactivate mutant p53 proteins, raising the crucial question: how much p53 activity is needed to elicit a therapeutic effect? METHODS: We have genetically modelled partial p53 reactivation using knock-in mice with inducible expression of the p53 variant E177R. This variant has a reduced ability to bind and transactivate target genes and consequently causes moderate cancer susceptibility. We have generated different syngeneically transplanted and autochthonous mouse models of p53-deficient acute myeloid leukemia and B or T cell lymphoma. After cancer manifestation we have activated E177R expression and analyzed the in vivo therapy response by bioluminescence or magnetic resonance imaging. The molecular response was further characterized in vitro by assays for gene expression, proliferation, senescence, differentiation, apoptosis and clonogenic growth. RESULTS: We report the conceptually intriguing observation that the p53 variant E177R, which promotes de novo leukemia and lymphoma formation, inhibits proliferation and viability, induces immune cell infiltration and triggers cancer regression in vivo when introduced into p53-deficient leukemia and lymphomas. p53-deficient cancer cells proved to be so addicted to the absence of p53 that even the low-level activity of E177R is detrimental to cancer growth. CONCLUSIONS: The observation that a partial loss-of-function p53 variant promotes tumorigenesis in one setting and induces regression in another, underlines the highly context-specific effects of individual p53 mutants. It further highlights the exquisite sensitivity of cancer cells to even small changes in p53 activity and reveals that changes in activity level are more important than the absolute level. As such, the study encourages ongoing research efforts into mutant p53 reactivating drugs by providing genetic proof-of-principle evidence that incomplete p53 reactivation may suffice to elicit a therapeutic response.
Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Apoptose , Carcinogênese , Humanos , Proteínas Mutantes , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
The tumor suppressive transcription factor p53 is frequently inactivated in cancer cells by missense mutations that cluster in the DNA binding domain. 30% hit mutational hotspot residues, resulting in a complete loss of transcriptional activity and mutant p53-driven chemotherapy resistance. Of the remaining 70% of non-hotspot mutants, many are partial loss-of-function (partial-LOF) mutants with residual transcriptional activity. The therapeutic consequences of a partial-LOF have remained largely elusive. Using a p53 mutation engineered to reduce DNA binding, we demonstrate that partial-LOF is sufficient to enhance oncogene-driven tumorigenesis in mouse models of lung and pancreatic ductal adenocarcinoma and acute myeloid leukemia. Interestingly, mouse and human tumors with partial-LOF mutations showed mutant p53 protein accumulation similar as known for hotspot mutants. Different from the chemotherapy resistance caused by p53-loss, the partial-LOF mutant sensitized to an apoptotic chemotherapy response and led to a survival benefit. Mechanistically, the pro-apoptotic transcriptional activity of mouse and human partial-LOF mutants was rescued at high mutant protein levels, suggesting that accumulation of partial-LOF mutants enables the observed apoptotic chemotherapy response. p53 non-hotspot mutants with partial-LOF, therefore, represent tumorigenic p53 mutations that need to be distinguished from other mutations because of their beneficial impact on survival in a therapy context.
Assuntos
Proteína Supressora de Tumor p53RESUMO
Progression through mitosis requires the coordinated regulation of Cdk1 kinase activity. Activation of Cdk1 is a multistep process comprising binding of Cdk1 to cyclin B, relocation of cyclin-kinase complexes to the nucleus, activating phosphorylation of Cdk1 on Thr(161) by the Cdk-activating kinase (CAK; Cdk7 in metazoans), and removal of inhibitory Thr(14) and Tyr(15) phosphorylations. This dephosphorylation is catalyzed by the dual specific Cdc25 phosphatases, which occur in three isoforms in mammalian cells, Cdc25A, -B, and -C. We find that expression of Cdc25A leads to an accelerated G(2)/M phase transition. In Cdc25A-overexpressing cells, Cdk1 exhibits high kinase activity despite being phosphorylated on Tyr(15). In addition, Tyr(15)-phosphorylated Cdk1 binds more cyclin B in Cdc25A-overexpressing cells compared with control cells. Consistent with this observation, we demonstrate that in human transformed cells, Cdc25A and Cdc25B, but not Cdc25C phosphatases have an effect on timing and efficiency of cyclin-kinase complex formation. Overexpression of Cdc25A or Cdc25B promotes earlier assembly and activation of Cdk1-cyclin B complexes, whereas repression of these phosphatases by short hairpin RNA has a reverse effect, leading to a substantial decrease in amounts of cyclin B-bound Cdk1 in G(2) and mitosis. Importantly, we find that Cdc25A overexpression leads to an activation of Cdk7 and increase in Thr(161) phosphorylation of Cdk1. In conclusion, our data suggest that complex assembly and dephosphorylation of Cdk1 at G(2)/M is tightly coupled and regulated by Cdc25 phosphatases.
Assuntos
Proteína Quinase CDC2/metabolismo , Divisão Celular , Ciclina B/metabolismo , Fase G2 , Fosfatases cdc25/metabolismo , Sequência de Bases , Ciclo Celular , Linhagem Celular Tumoral , Quinases Ciclina-Dependentes/metabolismo , Citometria de Fluxo/métodos , Humanos , Dados de Sequência Molecular , Fosforilação , Tirosina/química , Quinase Ativadora de Quinase Dependente de CiclinaRESUMO
p53 is a tumor suppressor that is mutated in half of all cancers. The high clinical relevance has made p53 a model transcription factor for delineating general mechanisms of transcriptional regulation. p53 forms tetramers that bind DNA in a highly cooperative manner. The DNA binding cooperativity of p53 has been studied by structural and molecular biologists as well as clinical oncologists. These experiments have revealed the structural basis for cooperative DNA binding and its impact on sequence specificity and target gene spectrum. Cooperativity was found to be critical for the control of p53-mediated cell fate decisions and tumor suppression. Importantly, an estimated number of 34,000 cancer patients per year world-wide have mutations of the amino acids mediating cooperativity, and knock-in mouse models have confirmed such mutations to be tumorigenic. While p53 cancer mutations are classically subdivided into "contact" and "structural" mutations, "cooperativity" mutations form a mechanistically distinct third class that affect the quaternary structure but leave DNA contacting residues and the three-dimensional folding of the DNA-binding domain intact. In this review we discuss the concept of DNA binding cooperativity and highlight the unique nature of cooperativity mutations and their clinical implications for cancer therapy.
RESUMO
TP53 mutations are found in 50% of all cancers and mutated TP53 status is considered poor for treatment. However, some TP53 mutations exhibit only partial loss-of-function (LOF), meaning they retain residual transcriptional and non-transcriptional activities that are potentially beneficial for therapy. Earlier we have characterized a knock-in mouse model for the partial LOF mutant Trp53E177R (p53RR). Reduced DNA binding cooperativity of this mutant led to the loss of p53-dependent apoptosis, while p53 functions in cell cycle control, senescence, metabolism, and antioxidant defense remained intact. Concomitantly, tumor suppression was evident but strongly compromised compared to wild-type mice. Here we used the Trp53E177R mouse as a model to investigate whether residual functions of mutant p53 can be engaged to induce cell death, which is considered the most desirable outcome of tumor therapy. We made use of Mdm2 knock-out in developing embryos as a sensitive tool for detecting remaining p53 activities. Genetic ablation of Mdm2 led to embryonic lethality in Trp53E177R/E177R homozygotes at days 9.5-11.5. This effect was not rescued by concomitant p21-knockout, indicating its independence of p21-mediated cell cycle arrest. Instead, immunohistochemical analysis showed widespread apoptosis in tissues of defective embryos accompanied by persistent accumulation of p53RR protein. This led to partial restoration of the mutant's proficiency in transcriptional induction of the pro-apoptotic genes Bbc3 (Puma) and Bax. These data indicate that increased quantity can compensate for qualitative defects of p53 mutants and suggest that Mdm2-targeting (potentially in combination with other drugs) might be effective against cells bearing p53 partial LOF mutants.
Assuntos
Apoptose , Proteínas Mutantes/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Perda do Embrião/patologia , Embrião de Mamíferos/patologia , Deleção de Genes , Homozigoto , CamundongosRESUMO
Cancer cells have a characteristic metabolism, mostly caused by alterations in signal transduction networks rather than mutations in metabolic enzymes. For metabolic drugs to be cancer-selective, signaling alterations need to be identified that confer a druggable vulnerability. Here, we demonstrate that many tumor cells with an acquired cancer drug resistance exhibit increased sensitivity to mechanistically distinct inhibitors of cancer metabolism. We demonstrate that this metabolic vulnerability is driven by mTORC1, which promotes resistance to chemotherapy and targeted cancer drugs, but simultaneously suppresses autophagy. We show that autophagy is essential for tumor cells to cope with therapeutic perturbation of metabolism and that mTORC1-mediated suppression of autophagy is required and sufficient for generating a metabolic vulnerability leading to energy crisis and apoptosis. Our study links mTOR-induced cancer drug resistance to autophagy defects as a cause of a metabolic liability and opens a therapeutic window for the treatment of otherwise therapy-refractory tumor patients.
Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Autofagia/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desoxiglucose , Tratamento Farmacológico , Feminino , Humanos , Neoplasias Pulmonares , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Posttranslational modifications are essential for regulating the transcription factor p53, which binds DNA in a highly cooperative manner to control expression of a plethora of tumor-suppressive programs. Here we show at the biochemical, cellular, and organismal level that the cooperative nature of DNA binding is reduced by phosphorylation of highly conserved serine residues (human S183/S185, mouse S180) in the DNA-binding domain. To explore the role of this inhibitory phosphorylation in vivo, new phosphorylation-deficient p53-S180A knock-in mice were generated. Chromatin immunoprecipitation sequencing and RNA sequencing studies of S180A knock-in cells demonstrated enhanced DNA binding and increased target gene expression. In vivo, this translated into a tissue-specific vulnerability of the bone marrow that caused depletion of hematopoietic stem cells and impaired proper regeneration of hematopoiesis after DNA damage. Median lifespan was significantly reduced by 20% from 709 days in wild type to only 568 days in S180A littermates. Importantly, lifespan was reduced by a loss of general fitness and increased susceptibility to age-related diseases, not by increased cancer incidence as often seen in other p53-mutant mouse models. For example, S180A knock-in mice showed markedly reduced spontaneous tumorigenesis and increased resistance to Myc-driven lymphoma and Eml4-Alk-driven lung cancer. Preventing phosphorylation of S183/S185 in human cells boosted p53 activity and allowed tumor cells to be killed more efficiently. Together, our data identify p53 DNA-binding domain phosphorylation as a druggable mechanism that balances tumorigenesis and aging. SIGNIFICANCE: These findings demonstrate that p53 tumor suppressor activity is reduced by DNA-binding domain phosphorylation to prevent aging and identify this phosphorylation as a potential target for cancer therapy.See related commentary by Horikawa, p. 5164.
Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Envelhecimento/genética , Animais , Carcinogênese/genética , DNA , Dano ao DNA , Longevidade/genética , Camundongos , Neoplasias/genética , Fosforilação , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismoRESUMO
Mutations in cancer abolish normal tumor suppressive functions of tumor protein p53 (TP53, best known as p53) and convert it into an oncogene. We recently reported the identification of ectonucleoside triphosphate diphosphohydrolase 5 (ENTPD5) as a transcriptional target of mutant p53 that enhances folding of N-glycosylated proteins required for cancer cell migration, invasion, and metastasis.
RESUMO
A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1) drying on a hot metal surface; (2) air impingement drying; and (3) hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature.
RESUMO
Tumours are heterogeneous cell populations that undergo clonal evolution during tumour progression, metastasis and response to therapy. Short hairpin RNAs (shRNAs) generate stable loss-of-function phenotypes and are versatile experimental tools to explore the contribution of individual genetic alterations to clonal evolution. In these experiments tumour cells carrying shRNAs are commonly tracked with fluorescent reporters. While this works well for cell culture studies and leukaemia mouse models, fluorescent reporters are poorly suited for animals with solid tumours--the most common tumour types in cancer patients. Here we develop a toolkit that uses secreted luciferases to track the fate of two different shRNA-expressing tumour cell clones competitively, both in vitro and in vivo. We demonstrate that secreted luciferase activities can be measured robustly in the blood stream of tumour-bearing mice to accurately quantify, in a minimally invasive manner, the dynamic evolution of two genetically distinct tumour subclones in preclinical mouse models of tumour development, metastasis and therapy.
Assuntos
Evolução Clonal/genética , Vetores Genéticos , Luciferases , Neoplasias/genética , RNA Interferente Pequeno/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células HCT116 , Humanos , Técnicas In Vitro , Camundongos , Microscopia de Fluorescência , Neoplasias/metabolismoRESUMO
Four molecules of the tumor suppressor p53 assemble to cooperatively bind proapoptotic target genes. The structural basis for cooperativity consists of interactions between adjacent DNA binding domains. Mutations at the interaction interface that compromise cooperativity were identified in cancer patients, suggesting a requirement of cooperativity for tumor suppression. We report on an analysis of cooperativity mutant p53E177R mice. Apoptotic functions of p53 triggered by DNA damage and oncogenes were abolished in these mice, whereas functions in cell-cycle control, senescence, metabolism, and antioxidant defense were retained and were sufficient to suppress development of spontaneous T cell lymphoma. Cooperativity mutant mice are nevertheless highly cancer prone and susceptible to different oncogene-induced tumors. Our data underscore the relevance of DNA binding cooperativity for p53-dependent apoptosis and tumor suppression and highlight cooperativity mutations as a class of p53 mutations that result in a selective loss of apoptotic functions due to an altered quaternary structure of the p53 tetramer.