Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Cell Res ; 343(2): 168-176, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27079869

RESUMO

In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro.


Assuntos
Músculo Liso Vascular/citologia , Engenharia Tecidual/métodos , Biomarcadores/metabolismo , Contagem de Células , Movimento Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Humanos , Miócitos de Músculo Liso/citologia , Fenótipo
2.
Cytoskeleton (Hoboken) ; 73(5): 221-32, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27015595

RESUMO

The significant gap between quantitative and qualitative understanding of cytoskeletal function is a pressing problem; microscopy and labeling techniques have improved qualitative investigations of localized cytoskeleton behavior, whereas quantitative analyses of whole cell cytoskeleton networks remain challenging. Here we present a method that accurately quantifies cytoskeleton dynamics. Our approach digitally subdivides cytoskeleton images using interrogation windows, within which box-counting is used to infer a fractal dimension (Df ) to characterize spatial arrangement, and gray value intensity (GVI) to determine actin density. A partitioning algorithm further obtains cytoskeleton characteristics from the perinuclear, cytosolic, and periphery cellular regions. We validated our measurement approach on Cytochalasin-treated cells using transgenically modified dermal fibroblast cells expressing fluorescent actin cytoskeletons. This method differentiates between normal and chemically disrupted actin networks, and quantifies rates of cytoskeletal degradation. Furthermore, GVI distributions were found to be inversely proportional to Df , having several biophysical implications for cytoskeleton formation/degradation. We additionally demonstrated detection sensitivity of differences in Df and GVI for cells seeded on substrates with varying degrees of stiffness, and coated with different attachment proteins. This general approach can be further implemented to gain insights on dynamic growth, disruption, and structure of the cytoskeleton (and other complex biological morphology) due to biological, chemical, or physical stimuli. © 2016 Wiley Periodicals, Inc.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , Actinas/genética , Citoesqueleto/genética , Derme/citologia , Fibroblastos/citologia , Humanos , Microscopia de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA