RESUMO
This research bears significant implications for river management, flood forecasting, and ecosystem preservation in the Lower Narmada Basin. A more precise estimation of Manning's Roughness Coefficeint (n) will enhance the accuracy of hydraulic models and facilitate informed decision-making regarding flood risk management, water resource allocation, and environmental conservation efforts. Ultimately, this study aspires to contribute to the sustainable management of perennial river systems in India and beyond by offering a robust methodology for optimizing Manning's n tailored to the complex hydrological dynamics of the Lower Narmada Basin. Through a synthesis of empirical evidence and computational modelling, it seeks to empower stakeholders with actionable insights toward preserving and enhancing these invaluable natural resources. Using the new HEC-RAS v 6.0, a one-dimensional hydrodynamic model was developed to predict overbank discharge at different points along the basin. The study analyzes water levels, stream discharges, and river stage, optimizing Manning's n and required flood risk management. The model predicted a strong output agreement with R2, NSE, and RMSE for the 2020 event as 0.83, 0.81, and 0.36, respectively, with an optimum Manning's n of 0.03. The lower Narmada Basin part near the coastal zone (validation point) appears inundated frequently. The paper aims to provide insights into optimizing Manning's coefficient, which can ultimately lead to better water flow predictions and more efficient water management in the region.
Assuntos
Monitoramento Ambiental , Inundações , Hidrodinâmica , Rios , Rios/química , Índia , Monitoramento Ambiental/métodos , Modelos Teóricos , Hidrologia , Conservação dos Recursos Naturais/métodos , Ecossistema , Movimentos da ÁguaRESUMO
Timely crop water stress detection can help precision irrigation management and minimize yield loss. A two-year study was conducted on non-invasive winter wheat water stress monitoring using state-of-the-art computer vision and thermal-RGB imagery inputs. Field treatment plots were irrigated using two irrigation systems (flood and sprinkler) at four rates (100, 75, 50, and 25% of crop evapotranspiration [ETc]). A total of 3200 images under different treatments were captured at critical growth stages, that is, 20, 35, 70, 95, and 108 days after sowing using a custom-developed thermal-RGB imaging system. Crop and soil response measurements of canopy temperature (Tc), relative water content (RWC), soil moisture content (SMC), and relative humidity (RH) were significantly affected by the irrigation treatments showing the lowest Tc (22.5 ± 2 °C), and highest RWC (90%) and SMC (25.7 ± 2.2%) for 100% ETc, and highest Tc (28 ± 3 °C), and lowest RWC (74%) and SMC (20.5 ± 3.1%) for 25% ETc. The RGB and thermal imagery were then used as inputs to feature-extraction-based deep learning models (AlexNet, GoogLeNet, Inception V3, MobileNet V2, ResNet50) while, RWC, SMC, Tc, and RH were the inputs to function-approximation models (Artificial Neural Network (ANN), Kernel Nearest Neighbor (KNN), Logistic Regression (LR), Support Vector Machine (SVM) and Long Short-Term Memory (DL-LSTM)) to classify stressed/non-stressed crops. Among the feature extraction-based models, ResNet50 outperformed other models showing a discriminant accuracy of 96.9% with RGB and 98.4% with thermal imagery inputs. Overall, classification accuracy was higher for thermal imagery compared to RGB imagery inputs. The DL-LSTM had the highest discriminant accuracy of 96.7% and less error among the function approximation-based models for classifying stress/non-stress. The study suggests that computer vision coupled with thermal-RGB imagery can be instrumental in high-throughput mitigation and management of crop water stress.