Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Chem ; 95(24): 9252-9262, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37293770

RESUMO

To promote the clinical application of human induced pluripotent stem cell (hiPSC)-derived hepatocytes, a method capable of monitoring regenerative processes and assessing differentiation efficiency without harming or modifying these cells is important. Raman microscopy provides a powerful tool for this as it enables label-free identification of intracellular biomolecules in live samples. Here, we used label-free Raman microscopy to assess hiPSC differentiation into hepatocyte lineage based on the intracellular chemical content. We contrasted these data with similar phenotypes from the HepaRG and from commercially available hiPSC-derived hepatocytes (iCell hepatocytes). We detected hepatic cytochromes, lipids, and glycogen in hiPSC-derived hepatocyte-like cells (HLCs) but not biliary-like cells (BLCs), indicating intrinsic differences in biomolecular content between these phenotypes. The data show significant glycogen and lipid accumulation as early as the definitive endoderm transition. Additionally, we explored the use of Raman imaging as a hepatotoxicity assay for the HepaRG and iCell hepatocytes, with data displaying a dose-dependent reduction of glycogen accumulation in response to acetaminophen. These findings show that the nondestructive and high-content nature of Raman imaging provides a promising tool for both quality control of hiPSC-derived hepatocytes and hepatotoxicity screening.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Células-Tronco Pluripotentes Induzidas , Humanos , Hepatócitos , Diferenciação Celular
2.
Drug Metab Dispos ; 47(6): 632-638, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30962288

RESUMO

Cytochrome P450 family 2 subfamily C member 19 (CYP2C19), in liver, plays important roles in terms of drug metabolism. It is known that CYP2C19 poor metabolizers (PMs) lack CYP2C19 metabolic capacity. Thus, unexpected drug-induced liver injury or decrease of drug efficacy would be caused in CYP2C19 substrate-treated CYP2C19 PMs. However, it is difficult to evaluate the safety and effectiveness of drugs and candidate compounds for CYP2C19 PMs because there is currently no model for this phenotype. Here, using human induced pluripotent stem cells (human iPS cells) and our highly efficient genome-editing and hepatocyte differentiation technologies, we generated CYP2C19-knockout human iPS cell-derived hepatocyte-like cells (CYP2C19-KO HLCs) as a novel CYP2C19 PM model for drug development and research. The gene expression levels of hepatocyte markers were similar between wild-type iPS cell-derived hepatocyte-like cells (WT HLCs) and CYP2C19-KO HLCs, suggesting that CYP2C19 deficiency did not affect the hepatic differentiation potency. We also examined CYP2C19 metabolic activity by measuring S-mephenytoin metabolites using ultra-performance liquid chromatography-tandem mass spectrometry. The CYP2C19 metabolic activity was almost eliminated by CYP2C19 knockout. Additionally, we evaluated whether clopidogrel (CYP2C19 substrate)-induced liver toxicity could be predicted using our model. Unexpectedly, there was no significant difference in cell viability between clopidogrel-treated WT HLCs and CYP2C19-KO HLCs. However, the cell viability in clopidogrel- and ketoconazole (CYP3A4 inhibitor)-treated CYP2C19-KO HLCs was significantly enhanced as compared with that in clopidogrel- and DMSO-treated CYP2C19-KO HLCs. This result suggests that CYP2C19-KO HLCs can predict clopidogrel-induced liver toxicity. We succeeded in generating CYP2C19 PM model cells using human iPS cells and genome-editing technologies for pharmaceutical research. SIGNIFICANCE STATEMENT: Although unexpected drug-induced liver injury or decrease of drug efficacy would be caused in CYP2C19 substrate-treated CYP2C19 poor metabolizers, it is difficult to evaluate the safety and effectiveness of drugs and candidate compounds for CYP2C19 poor metabolizers because there is currently no model for this phenotype. Using human iPS cells and our highly efficient genome editing and hepatocyte differentiation technologies, we generated CYP2C19-knockout human iPS cell-derived hepatocyte-like cells as a novel CYP2C19 poor metabolizer model for drug development and research.


Assuntos
Clopidogrel/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Cetoconazol/metabolismo , Fígado/metabolismo , Taxa de Depuração Metabólica/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular , Sobrevivência Celular/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Clopidogrel/farmacologia , Hepatócitos/metabolismo , Humanos , Cetoconazol/farmacologia
3.
Stem Cell Res Ther ; 15(1): 57, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424603

RESUMO

BACKGROUND: Human induced pluripotent stem (iPS) cell-derived enterocyte-like cells (ELCs) are expected to be useful for evaluating the intestinal absorption and metabolism of orally administered drugs. However, it is difficult to generate large amounts of ELCs with high quality because they cannot proliferate and be passaged. METHODS: To solve the issue above, we have established intestinal organoids from ELCs generated using our protocol. Furthermore, monolayers were produced from the organoids. We evaluated the usefulness of the monolayers by comparing their functions with those of the original ELCs and the organoids. RESULTS: We established organoids from ELCs (ELC-org) that could be passaged and maintained for more than a year. When ELC-org were dissociated into single cells and seeded on cell culture inserts (ELC-org-mono), they formed a tight monolayer in 3 days. Both ELC-org and ELC-org-mono were composed exclusively of epithelial cells. Gene expressions of many drug-metabolizing enzymes and drug transporters in ELC-org-mono were enhanced, as compared with those in ELC-org, to a level comparable to those in adult human small intestine. The CYP3A4 activity level in ELC-org-mono was comparable or higher than that in primary cryopreserved human small intestinal cells. ELC-org-mono had the efflux activities of P-gp and BCRP. Importantly, ELC-org-mono maintained high intestinal functions without any negative effects even after long-term culture (for more than a year) or cryopreservation. RNA-seq analysis showed that ELC-org-mono were more mature as intestinal epithelial cells than ELCs or ELC-org. CONCLUSIONS: We have successfully improved the function and convenience of ELCs by utilizing organoid technology.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Diferenciação Celular , Proteínas de Neoplasias/metabolismo , Organoides/metabolismo , Mucosa Intestinal/metabolismo
4.
iScience ; 27(9): 110778, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39280628

RESUMO

Human liver organoids derived from primary human hepatocytes (PHHs) are expected to be a hepatocyte source for preclinical in vitro studies of drug metabolism and disposition. Because hepatic functions of these organoids remain low, it is necessary to enhance the hepatic functions. Here, we develop a novel method for two dimensional (2D)-cultured hepatic differentiation from PHH-derived organoids by screening several compounds, cytokines, and growth factors. Hepatic gene expressions in the hepatocyte-like cells differentiated from PHH-derived organoids (Org-HEPs) were greatly increased, compared to those in PHH-derived organoids. The metabolic activities of cytochrome P450 (CYP) 1A2, CYP2C8, CYP2C19, CYP2E1, and CYP3A4 were at levels comparable to those in PHHs. The cell viability of Org-HEPs treated with hepatotoxic drugs was almost the same as that of PHHs. Thus, PHH-derived organoids could be differentiated into highly functional hepatocytes in 2D culture. Thus, Org-HEPs will be useful for pharmaceutical research, including hepatotoxicity tests.

5.
Sci Rep ; 14(1): 10846, 2024 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-38736008

RESUMO

Human liver organoids are in vitro three dimensionally (3D) cultured cells that have a bipotent stem cell phenotype. Translational research of human liver organoids for drug discovery has been limited by the challenge of their low hepatic function compared to primary human hepatocytes (PHHs). Various attempts have been made to develop functional hepatocyte-like cells from human liver organoids. However, none have achieved the same level of hepatic functions as PHHs. We here attempted to culture human liver organoids established from cryopreserved PHHs (PHH-derived organoids), using HYDROX, a chemically defined 3D nanofiber. While the proliferative capacity of PHH-derived organoids was lost by HYDROX-culture, the gene expression levels of drug-metabolizing enzymes were significantly improved. Enzymatic activities of cytochrome P450 3A4 (CYP3A4), CYP2C19, and CYP1A2 in HYDROX-cultured PHH-derived organoids (Org-HYDROX) were comparable to those in PHHs. When treated with hepatotoxic drugs such as troglitazone, amiodarone and acetaminophen, Org-HYDROX showed similar cell viability to PHHs, suggesting that Org-HYDROX could be applied to drug-induced hepatotoxicity tests. Furthermore, Org-HYDROX maintained its functions for up to 35 days and could be applied to chronic drug-induced hepatotoxicity tests using fialuridine. Our findings demonstrated that HYDROX could possibly be a novel biomaterial for differentiating human liver organoids towards hepatocytes applicable to pharmaceutical research.


Assuntos
Diferenciação Celular , Hepatócitos , Nanofibras , Organoides , Humanos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Organoides/citologia , Diferenciação Celular/efeitos dos fármacos , Nanofibras/química , Células Cultivadas , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP3A/genética
6.
PLoS One ; 18(5): e0285783, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37200286

RESUMO

Human induced pluripotent stem (iPS) cell-derived hepatocyte-like cells (HLCs) are expected to replace primary human hepatocytes as a new source of functional hepatocytes in various medical applications. However, the hepatic functions of HLCs are still low and it takes a long time to differentiate them from human iPS cells. Furthermore, HLCs have very low proliferative capacity and are difficult to be passaged due to loss of hepatic functions after reseeding. To overcome these problems, we attempted to develop a technology to dissociate, cryopreserve, and reseed HLCs in this study. By adding epithelial-mesenchymal transition inhibitors and optimizing the cell dissociation time, we have developed a method for passaging HLCs without loss of their functions. After passage, HLCs showed a hepatocyte-like polygonal cell morphology and expressed major hepatocyte marker proteins such as albumin and cytochrome P450 3A4 (CYP3A4). In addition, the HLCs had low-density lipoprotein uptake and glycogen storage capacity. The HLCs also showed higher CYP3A4 activity and increased gene expression levels of major hepatocyte markers after passage compared to before passage. Finally, they maintained their functions even after their cryopreservation and re-culture. By applying this technology, it will be possible to provide ready-to-use availability of cryopreserved HLCs for drug discovery research.


Assuntos
Citocromo P-450 CYP3A , Células-Tronco Pluripotentes Induzidas , Humanos , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Congelamento , Diferenciação Celular , Hepatócitos/metabolismo
7.
Biochem Biophys Rep ; 33: 101432, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36714539

RESUMO

Organoid culture is a technology for creating three-dimensional (3D) tissue-like structures in vitro, and is expected to be used in various fields. It was reported that human adult bile duct cells derived from human biopsy can be expanded as organoids in vitro that exhibit stem cell-like properties including high proliferative ability and differentiation ability toward both hepatocytes and biliary epithelial cells (BECs). Although many studies have achieved the efficient differentiation of bipotent human liver-derived organoids (hLOs) toward mature hepatocytes, the differentiation potency toward mature BECs remains unclear. In this study, we attempted to evaluate the differentiation potency of bipotent hLOs, which were generated from primary (cryopreserved) human hepatocytes (PHHs), toward BECs by sequential treatment with epidermal growth factor (EGF), Interleukin-6 (IL-6), and sodium taurocholate hydrate. Along with the differentiation toward bipotent hLOs-derived BECs (Org-BECs), increases in the gene expression levels of BEC markers and formation of the lumen-like structures typical of BECs were observed. In addition, Org-BECs exhibited P-glycoprotein-mediated drug transport capacity. Finally, in order to expand the applicability of Org-BECs, we succeeded in the differentiation of bipotent hLOs toward BECs in a two-dimensional (2D) culture system. Our findings demonstrated that bipotent hLOs can indeed differentiate into mature BECs, meaning that they possess a capacity for differentiation toward both hepatocytes and BECs.

8.
Mol Ther Methods Clin Dev ; 30: 429-442, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37663646

RESUMO

Uridine diphosphate glucuronosyltransferases (UGTs) are highly expressed in the liver and are involved in the metabolism of many drugs. In particular, UGT1A1 has a genetic polymorphism that causes decreased activity, leading to drug-induced hepatotoxicity. Therefore, an in vitro evaluation system that accurately predicts the kinetics of drugs involving UGT1A1 is required. However, there is no such evaluation system because of the absence of the UGT1A1-selective inhibitor. Here, using human induced pluripotent stem (iPS) cells, genome editing technology, and organoid technology, we generated UGT1A1-knockout human iPS hepatocyte-derived liver organoids (UGT1A1-KO i-HOs) as a model for UGT1A1-specific kinetics and toxicity evaluation. i-HOs showed higher gene expression of many drug-metabolizing enzymes including UGT1A1 than human iPS cell-derived hepatocyte-like cells (iPS-HLCs), suggesting that hepatic organoid technology improves liver functions. Wild-type (WT) i-HOs showed similar levels of UGT1A1 activity to primary human (cryopreserved) hepatocytes, while UGT1A1-KO i-HOs completely lost the activity. Additionally, to evaluate whether this model can be used to predict drug-induced hepatotoxicity, UGT1A1-KO i-HOs were exposed to SN-38, the active metabolite of irinotecan, an anticancer drug, and acetaminophen and confirmed that these cells could predict UGT1A1-mediated toxicity. Thus, we succeeded in generating model cells that enable evaluation of UGT1A1-specific kinetics and toxicity.

9.
ACS Appl Bio Mater ; 4(9): 7290-7299, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35006958

RESUMO

Various three-dimensional (3D) culture systems are available to provide more accurate in vivo mimicry than two-dimensional (2D) cultures. Synthetic and/or xeno-free biomaterials are desired, as they would provide lower batch-to-batch variability and high repeatability. Here, we introduce a 3D culture system using nanofibers composed of an amphiphilic polydepsipeptide-based polymer named HYDROX, which turns into 3D nanofibers after hydration. Our system produces a large amount of cell aggregates and requires only the seeding of a cell mixture. In addition, cells cultured with HYDROX can be collected with only a centrifugation procedure, and analytical assays can then be performed. Here, we applied HYDROX to hepatic differentiation from induced pluripotent stem cells. The cells cultured with HYDROX formed aggregates and HYDROX strongly promoted hepatic differentiation and maturation in terms of functions such as the positive ratio of alpha-1 antitrypsin, the production of albumin, the cytochrome P450 (CYP) 3A4 activity, and the low-density-lipoprotein uptake ability. In addition, primary human hepatocytes cultured with HYDROX showed significantly improved CYP3A4 gene expression and activity. The viscoelasticity and stiffness of HYDROX can be modulated by varying the concentration of the synthetic polymer, thereby providing a suitable microenvironment for the differentiation of cells with various characteristics toward a target cell type. Our findings demonstrated that HYDROX is a promising biomaterial for 3D cultures in research fields ranging from basic cell research to drug discovery.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Células-Tronco Pluripotentes Induzidas , Diferenciação Celular , Hepatócitos , Humanos , Polímeros/farmacologia
10.
PLoS One ; 15(2): e0229654, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32106262

RESUMO

Human hepatocytes are essential materials in pharmaceutical researches. Not only primary human hepatocytes (PHH) but also human iPS cell-derived hepatocyte-like cells (human iPS-HLCs) are expected to be applied as materials for pharmaceutical researches. To date, several culture media have been developed for culturing human hepatocytes. However, there have been no reports comparing these media to determine which is most suitable for culturing human hepatocytes. In this study, we compared five commercial media (Hepatocyte Culture Medium (HCM), HepatoZYME-SFM, Cellartis Power Primary HEP Medium, DMEM/F12, and William's E Medium (WEM)) to determine which is most suitable for culturing PHH and human iPS-HLCs. In hepatic differentiation of human iPS cells (day 14-25 of differentiation), albumin (ALB) and urea secretion abilities and CYP2C9, CYP2C19, and CYP3A4 activities were the highest when using HCM or WEM. During maintenance of human iPS-HLCs, ALB and urea producing abilities and CYP2C9, CYP2C19, and CYP3A4 activities were the highest when using HCM. Importantly, we found that human iPS-HLCs cultured in HCM were maintained for 3 weeks or more without impairment of their hepatic functions. These results suggest that it is necessary to select an optimal medium for hepatic differentiation and maintenance of human iPS-HLCs. In the case of PHH culture, there was little difference in hepatic functions among the five media. However, the CYP2C9, CYP2C19, and CYP3A4 activities were the highest when using HCM and WEM. In conclusion, it is important to select the optimal medium for specific application when carrying out pharmaceutical researches using human hepatocytes.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura , Hepatócitos/citologia , Hepatócitos/metabolismo , Albuminas/metabolismo , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Ureia/metabolismo
11.
Hepatol Commun ; 4(2): 255-267, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32025609

RESUMO

Single nucleotide polymorphisms in Tolloid-like 1 (TLL1) and the expression of TLL1 are known to be closely related to hepatocarcinogenesis after hepatitis C virus elimination or liver fibrosis in patients with nonalcoholic fatty liver disease. TLL1 is a type of matrix metalloprotease and has two isoforms in humans, with the short isoform showing higher activity. However, the functional role of TLL1 in human liver development is unknown. Here, we attempted to elucidate the function of human TLL1 using hepatocyte-like cells generated from human pluripotent stem cells. First, we generated TLL1-knockout human induced pluripotent stem (iPS) cells and found that hepatic differentiation was promoted by TLL1 knockout. Next, we explored TLL1-secreting cells using a model of liver development and identified that kinase insert domain receptor (FLK1)-positive cells (mesodermal cells) highly express TLL1. Finally, to elucidate the mechanism by which TLL1 knockout promotes hepatic differentiation, the expression profiles of transforming growth factor beta (TGFß), a main target gene of TLL1, and its related genes were analyzed in hepatic differentiation. Both the amount of active TGFß and the expression of TGFß target genes were decreased by TLL1 knockout. It is known that TGFß negatively regulates hepatic differentiation. Conclusion: TLL1 appears to negatively regulate hepatic differentiation of human iPS cells by up-regulating TGFß signaling. Our findings will provide new insight into the function of TLL1 in human liver development.

12.
Sci Rep ; 9(1): 3713, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30842525

RESUMO

Human induced pluripotent stem cell-derived hepatocyte-like cells are expected to be utilized in pharmaceutical research and regenerative medicine. In general, human induced pluripotent stem (iPS) cells are differentiated into hepatocyte-like cells through definitive endoderm cells and hepatoblast-like cells using various growth factors that are essential for liver development. Although recombinant bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs) are widely used in the hepatoblast differentiation, hepatoblast differentiation process has not been fully modified. In this study, we examined the roles of BMPs and FGFs in the hepatoblast differentiation from human iPS cells. Surprisingly, the gene expression levels of hepatoblast markers were upregulated by the removal of FGFs. In addition, the percentages of hepatoblast markers-positive cells were increased by the removal of FGFs. Furthermore, the hepatocyte differentiation potency was also significantly increased by the removal of FGFs. To examine whether FGF signals are completely unnecessary for the hepatoblast differentiation, the expression levels of endogenous FGF ligands and receptors were examined. The definitive endoderm cells highly expressed the FGF ligand, FGF2, and the FGF receptor, FGFR1. To examine the role of endogenous FGF signals, an FGFR inhibitor was treated during the hepatoblast differentiation. The hepatoblast differentiation was promoted by using FGFR inhibitor, suggesting that endogenous FGF signals are also unnecessary for the hepatoblast differentiation. In conclusion, we found that FGF signals are not essential for hepatoblast differentiation. We believe that our finding will be useful for generating functional hepatocyte-like cells for medical applications.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Células-Tronco Pluripotentes Induzidas/fisiologia , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Endoderma/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Recombinantes/metabolismo
13.
Stem Cells Dev ; 27(6): 405-414, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29378471

RESUMO

Human induced pluripotent stem cell-derived hepatocyte-like cells (HLCs) are expected to be utilized in pharmaceutical research, including drug screening. However, the hepatocyte functions of the HLCs are still lower than those of human hepatocytes. Therefore, we attempted to improve the hepatocyte differentiation method by modulating the DNA epigenetic status. We first examined the expression profiles of the maintenance DNA methyltransferase (DNMT) 1 and the de novo DNMTs DNMT3A and DNMT3B, all of which are essential for mammalian development. Among these DNMTs, the expression levels of DNMT3B were significantly decreased during the hepatoblast differentiation. To accelerate the hepatoblast differentiation, a DNMT3B-selective inhibitor, nanaomycin A, was treated during the hepatoblast differentiation. The gene expression levels of hepatoblast markers (such as alpha-fetoprotein and hepatocyte nuclear factor 4 alpha) were increased by the nanaomycin A treatment. On the other hand, the gene expression levels of hepatoblast markers were decreased by DNMT3B overexpression. These results suggest that it might be possible to promote the hepatoblast differentiation by DNMT3B inhibition using nanaomycin A. Importantly, we also confirmed that the hepatocyte differentiation potency of nanaomycin A-treated hepatoblast-like cells was higher than that of dimethyl sulfoxide-treated hepatoblast-like cells. Our findings should assist in the future generation of functional HLCs for pharmaceutical research.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Naftoquinonas/farmacologia , Biomarcadores/metabolismo , Linhagem Celular , Epigênese Genética/efeitos dos fármacos , Epigenômica/métodos , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Metiltransferases/metabolismo
14.
Biomaterials ; 161: 24-32, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29421559

RESUMO

Human iPS cell-derived hepatocyte-like cells are expected to be utilized in pharmaceutical research. However, the purity of high-functioning hepatocyte-like cells is not high enough. In particular, the purity of cytochrome P450 3A4 (CYP3A4), which is a representative hepatic drug-metabolizing enzyme, positive cells is still quite low (approximately 20%). To address this problem, we established the CYP3A4-NeoR-EGFP transgenic reporter human iPS cell line (CYP3A4-NeoR-EGFP iPS cells) by using genome editing technology. The CYP3A4-NeoR-EGFP iPS cells were differentiated into hepatocyte-like cells, and then the hepatocyte-like cells were treated with neomycin to concentrate the hepatocyte-like cells which strongly express CYP3A4. After the neomycin treatment, the percentage of CYP3A4-positive cells was higher than 80%. The gene expression levels of various drug-metabolizing enzymes, transporters, and hepatic transcription factors were significantly enhanced by neomycin treatment. In addition, the CYP1A2, 2C19, 2D6, and 3A4 activities and biliary excretion capacities were significantly increased by neomycin treatment. We also confirmed that the detection sensitivity of drug-inducing hepatotoxicity was enhanced by neomycin treatment. We succeeded in obtaining human iPS cell-derived hepatocyte-like cells that highly express CYP3A4 at high purity. We believe that our high-purity and high-functioning hepatocyte-like cells could be used to evaluate the risk of drug candidates.


Assuntos
Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Pesquisa Farmacêutica/métodos , Citocromo P-450 CYP3A/metabolismo , Tratamento Farmacológico , Humanos , Neomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA