Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Ecol ; 49(7-8): 363-368, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37085723

RESUMO

The beetle family Disteniidae is currently considered to be closely related to the much larger family Cerambycidae, the longhorned beetles. The 300 + species of disteniids are mostly native to tropical and subtropical regions, with the only described North American species north of Mexico being Elytrimitatrix undata (F.). Here we describe the identification and field testing of (1R,4R)-quercivorol as a male-produced aggregation-sex pheromone component for E. undata. This is the first pheromone identified for any species within the family Disteniidae.


Assuntos
Besouros , Atrativos Sexuais , Animais , Masculino , Atrativos Sexuais/farmacologia , Feromônios , Monoterpenos
2.
Environ Entomol ; 53(1): 108-115, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38198762

RESUMO

Anisandrus maiche Stark (Coleoptera: Curculionidae: Scolytinae) is a non-native ambrosia beetle from central Asia that has been spreading throughout the eastern United States since 2005. Preferred hosts of A. maiche are not well characterized within its currently invaded range, but it is established in managed and natural forests throughout Indiana. Current monitoring and detection efforts for this beetle rely on ethanol-baited traps, but fungal volatiles may alter the attraction of A. maiche to ethanol. In this study, we conducted trapping experiments in Indiana to determine the extent to which a suite of common fungal alcohols influences the response of A. maiche to ethanol-baited traps. We then evaluated isoamyl and isobutyl alcohol as potential attractants for A. maiche and their ability to enhance attraction to ethanol. Lastly, we used SPME-GC-MS to identify volatiles from Ambrosiella cleistominuta (Mayers & Harr.), the fungal symbiont of A. maiche, grown for 7 and 14 days on malt extract agar. Benzyl alcohol, isobutyl alcohol, hexanol, methyl phenylacetate, phenethyl alcohol, and piperitone reduced the attraction of A. maiche to ethanol-baited traps in the field. Moreover, adding methyl benzoate and isoamyl alcohol individually to ethanol-baited traps did not further increase A. maiche capture. When paired with ethanol, isoamyl alcohol repelled beetles in the early flight period but did not significantly increase trap capture during the fall flight. These results represent a first step in understanding the role of fungal volatiles in the colonization behavior of A. maiche and may ultimately inform management strategies for this species.


Assuntos
Butanóis , Besouros , Pentanóis , Gorgulhos , Animais , Besouros/fisiologia , Etanol/farmacologia , Controle de Insetos , Feromônios
3.
J Econ Entomol ; 117(4): 1476-1484, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38940450

RESUMO

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are among the most devastating pests of orchards, nurseries, and forests. Improving trap design and ethanol lures for capturing ambrosia beetles is necessary to develop effective monitoring and management strategies. In this 2-year study, we assessed 4 trap designs and 3 commercially formulated ethanol lures to refine trapping methods tailored for orchard environments in the eastern United States. Our investigation included orchards in 2 regions, Georgia (pecan orchards) and New York (apple orchards), targeting major ambrosia beetle (Coleoptera: Curculionidae) pest species such as Xylosandrus crassiusculus (Motschulsky), X. compactus (Eichhoff), X. germanus (Blandford), and Anisandrus maiche (Stark). Among the trap designs evaluated, clear sticky cards were most effective for capturing ambrosia beetles across orchard locations. Notably, in Georgia, sticky cards paired with specific low-release ethanol lures demonstrated enhanced capture of X. crassiusculus and X. compactus, 2 key ambrosia beetle pests found infesting young pecan trees. Similarly, in New York, sticky cards baited with low-release ethanol lures captured the highest rates of X. germanus and A. maiche, thus indicating its suitability for diverse ambrosia beetle populations. Overall, our study provides practical implications for tailoring trapping protocols to optimize ambrosia beetle management strategies in orchard settings.


Assuntos
Etanol , Controle de Insetos , Gorgulhos , Animais , New York , Georgia , Controle de Insetos/métodos , Feromônios/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA