Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Langmuir ; 36(32): 9436-9442, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32683867

RESUMO

Enormous efforts have been devoted to the development of crystalline aerogels toward heterogeneous catalysis, energy storage, ion/molecular absorption, and luminescence. However, properties of aerogels are not fully exploited due to their low content of functional moieties embedded in their solid networks, low crystallinity, and limited chemical compositions. Herein, we develop a one-pot approach based on crystallization from amorphous metal hydroxides modified with a ß-diketone ligand, toward crystalline transition-metal hydroxide aerogels. Synthesis of monolithic and crystalline aerogels of layered double hydroxide (LDH) was performed in a Ni-Al system starting from aqueous ethanol solutions of NiCl2·6H2O and AlCl3·6H2O with acetylacetone (acac) as an organic ligand. Propylene oxide (PO) as an alkalization reagent was added into precursory solutions to yield monolithic wet gels. The successive pH increase induces the formation of a three-dimensional (3-D) solid framework composed of amorphous Al(OH)3. Then, amphoteric Al(OH)3 undergoes crystallization into Ni-Al LDH via an acetylacetone-driven dissolution-crystallization of metal hydroxides without destroying the preformed 3-D solid framework. The process allows us to obtain crystalline aerogel monoliths with high porosity and high transparency after supercritical CO2 drying of wet gels. The present scheme can be expected to synthesize functionalized aerogel composed of crystalline transition-metal oxide/hydroxide nanobuilding blocks (NBBs).

2.
Molecules ; 25(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905676

RESUMO

A design of atomic and oligomer level structure in organic-inorganic hybrid materials is highly important for various applications. Nonaqueous acid-base reaction allows us to prepare silicophosphates with controlled inorganic networks (-(O-P-O-Si)n) at atomic level because phosphorous and silicon-based precursors can react directly, resulting in an alternating copolymer network. Organic functionalization in those materials has been realized so far by using organic-modified phosphorous acid and/or organo-chlorosilane as precursors. In the present study, silicophosphate oligomers exhibiting inorganic-organic hybrid chains of (-(O-P-O-Si-R-Si)n) (R: bridging organic functional groups), are prepared from phosphoric acid and organo-bridged bis(chlorosilane). The 1, 2-bis(chlorodimethylsilyl)ethane ((C2H4)(Me2SiCl)2) and 1, 4-bis(chlorodimethylsilyl)benzene ((C6H4)(Me2SiCl)2) were used as organo-bridged bis(chlorosilane). Different types of silicophosphate oligomers with different network structures and terminal groups (P-OH and/or Si-Cl) were prepared by changing the reaction temperature and molar ratio of precursors. The formation of low molecular weight oligomers of ring and cage morphologies (ring tetramer, cage pentamer, and ring hexamer) is suggested in the product prepared from phosphoric acid and (C6H4)(Me2SiCl)2 molecule at 150 °C. Those silicophosphate hybrid oligomers are expected to be used as building blocks of hybrid materials with well-defined network structures for desired functionalities.


Assuntos
Ácidos Fosfóricos/química , Polímeros/química , Polímeros/síntese química , Silício/química
3.
Angew Chem Int Ed Engl ; 58(21): 6886-6890, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30924218

RESUMO

The precise alignment of multiple layers of metal-organic framework (MOF) thin films, or MOF-on-MOF films, over macroscopic length scales is presented. The MOF-on-MOF films are fabricated by epitaxially matching the interface. The first MOF layer (Cu2 (BPDC)2 , BPDC=biphenyl-4,4'-dicarboxylate) is grown on an oriented Cu(OH)2 film by a "one-pot" approach. Aligned second (Cu2 (BDC)2 , BDC=benzene 1,4-dicarboxylate, or Cu2 (BPYDC)2 , BPYDC=2,2'-bipyridine-5,5'-dicarboxylate) MOF layers can be deposited using liquid-phase epitaxy. The co-orientation of the MOF films is confirmed by X-ray diffraction. Importantly, our strategy allows for the synthesis of aligned MOF films, for example, Cu2 (BPYDC)2 , that cannot be grown on a Cu(OH)2 surface. We show that aligned MOF films furnished with Ag nanoparticles show a unique anisotropic plasmon resonance. Our MOF-on-MOF approach expands the chemistry of heteroepitaxially oriented MOF films and provides a new toolbox for multifunctional porous coatings.

4.
Nat Mater ; 16(3): 342-348, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27918565

RESUMO

The fabrication of oriented, crystalline films of metal-organic frameworks (MOFs) is a critical step toward their application to advanced technologies such as optics, microelectronics, microfluidics and sensing. However, the direct synthesis of MOF films with controlled crystalline orientation remains a significant challenge. Here we report a one-step approach, carried out under mild conditions, that exploits heteroepitaxial growth for the rapid fabrication of oriented polycrystalline MOF films on the centimetre scale. Our methodology employs crystalline copper hydroxide as a substrate and yields MOF films with oriented pore channels on scales that primarily depend on the dimensions of the substrate. To demonstrate that an anisotropic crystalline morphology can translate to a functional property, we assembled a centimetre-scale MOF film in the presence of a dye and showed that the optical response could be switched 'ON' or 'OFF' by simply rotating the film.


Assuntos
Estruturas Metalorgânicas/química , Anisotropia , Compostos Inorgânicos/química , Modelos Moleculares , Conformação Molecular , Nanotubos/química , Porosidade
5.
Langmuir ; 32(35): 8826-33, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27501777

RESUMO

Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated.

6.
ACS Appl Mater Interfaces ; 16(13): 16903-16911, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38501922

RESUMO

Free-standing films without the need for any support materials attract attention because of their excellent flexibility in use and ability to be transferred to various substrates. However, free-standing films containing large amounts of inorganic crystalline particles are hard to achieve due to their low strength. In this study, we found the possibility of preparing a free-standing composite film of CuS/polyvinylpyrrolidone (PVP) at a large loading of CuS (>50%) from a concentrated colloidal dispersion of CuS nanoparticles modified with PVP. Despite the large amount of inorganic crystals contained in the free-standing film, the film was strong enough to be handled without any support materials. As a proof-of-concept application of the free-standing film, a solar water evaporation experiment was performed. The CuS/PVP free-standing film exhibited photothermal conversion under light illumination to generate heat and accelerate water evaporation, achieving an evaporation rate of 4.35 kg·m-2 h-1 and an evaporation efficiency of 96.3% at a power density of 3 suns. In addition, thanks to the free-standing feature, one side of the CuS/PVP film could be hydrophobized with polydimethylsiloxane to form a Janus thin film, allowing for floating on the water surface. As a result, effective water evaporation was achieved because of the selective evaporation of water from the air/water interface.

7.
Angew Chem Int Ed Engl ; 50(35): 8016-20, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21698736

RESUMO

A profusion of phospholes: Diacenaphtho[1,2-b:1',2'-d]phospholes, a new class of arene-fused phosphole π-systems, were synthesized and their structural and electrochemical properties studied. The P-sulfide derivative has a high electron-transporting ability (µ(E) =2.4×10(-3) cm(2) V(-1) s(-1)) in a vacuum-deposited film.

8.
RSC Adv ; 10(47): 28032-28036, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35519096

RESUMO

A novel approach for thermo-responsive wettability has been accomplished by surface roughness change induced by thermal expansion of paraffin coated on titanate nanostructures. The surface exhibits thermo-responsive and reversible wettability change in a hydrophobic regime; the surface shows superhydrophobicity with contact angles of ∼157° below 50 °C and ∼118° above 50 °C due to a decrease of surface roughness caused by thermally-expanded paraffin at higher temperatures. Reversible wettability change of ∼40° of a contact angle allows for fast and multi-directional droplet transport. The present approach affords a versatile selection of materials and wide variety of contact angles, promoting both scientific advancement and technology innovation in the field of smart surfaces.

9.
Chem Sci ; 11(30): 8005-8012, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34094169

RESUMO

Controlling the direction of molecular-scale pores enables the accommodation of guest molecular-scale species with alignment in the desired direction, allowing for the development of high-performance mechanical, thermal, electronic, photonic and biomedical organic devices (host-guest approach). Regularly ordered 1D nanochannels of metal-organic frameworks (MOFs) have been demonstrated as superior hosts for aligning functional molecules and polymers. However, controlling the orientation of MOF films with 1D nanochannels at commercially relevant scales remains a significant challenge. Here, we report the fabrication of macroscopically oriented films of Cu-based pillar-layered MOFs having regularly ordered 1D nanochannels. The direction of 1D nanochannels is controllable by optimizing the crystal growth process; 1D nanochannels align either perpendicular or parallel to substrates, offering molecular-scale pore arrays for a macroscopic alignment of functional guest molecules in the desired direction. Due to the fundamental interest and widespread technological importance of controlling the alignment of functional molecules and polymers in a particular direction, orientation-controllable MOF films will open up the possibility of realising the potential of MOFs in advanced technologies.

10.
RSC Adv ; 10(14): 8066-8073, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35497863

RESUMO

Imparting an enhanced CO2 reduction selectivity to ZnGa2O4 photocatalysts has been demonstrated by controlled crystallization from interdispersed nanoparticles of zinc and gallium hydroxides. The hydroxide precursor in which Zn(ii) and Ga(iii) are homogeneously interdispersed was prepared through an epoxide-driven sol-gel reaction. ZnGa2O4 obtained by a heat-treatment exhibits a higher surface basicity and an enhanced affinity for CO2 molecules than previously-reported standard ZnGa2O4. The enhanced affinity for CO2 molecules of the resultant ZnGa2O4 leads to highly-selective CO evolution in CO2 photo-reduction with H2O reductants. The present scheme is promising to achieve desirable surface chemistry on metal oxide photocatalysts.

11.
Sci Rep ; 7(1): 5469, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710458

RESUMO

Advanced optical applications of fluorescent carbon dots (C-dots) require highly integrated host-guest solid-state materials with a careful design of C-dots - matrix interface to control the optical response. We have developed a new synthesis based on the grafting of an organo-functional silane (3-glycidyloxypropyltrimethoxysilane, GPTMS) on amino-functionalized C-dots, which enables the fabrication of highly fluorescent organosilica-based hybrid organic-inorganic films through sol-gel process. The GPTMS grafting onto C-dots has been achieved via an epoxy-amine reaction under controlled conditions. Besides providing an efficient strategy to embed C-dots into a hybrid solid-state material, the modification of C-dots surface by GPTMS allows tuning their photoluminescence properties and gives rise to an additional, intense emission around 490 nm. Photoluminescence spectra reveal an interaction between C-dots surface and the polymeric chains which are locally formed by GPTMS polymerization. The present method is a step forward to the development of a surface modification technology aimed at controlling C-dots host-guest systems at the nanoscale.

12.
ACS Nano ; 10(5): 5550-9, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27124717

RESUMO

Increasing attention has been dedicated to the development of nanomaterials rendering green and sustainable processes, which occur in benign aqueous reaction media. Herein, we demonstrate the synthesis of another family of green nanomaterials, layered double hydroxide (LDH) nanoclusters, which are concentrated (98.7 g/L in aqueous solvent), stably dispersed (transparent sol for >2 weeks), and catalytically active colloids of nano LDHs (isotropic shape with the size of 7.8 nm as determined by small-angle X-ray scattering). LDH nanoclusters are available as colloidal building blocks to give access to meso- and macroporous LDH materials. Proof-of-concept applications revealed that the LDH nanocluster works as a solid basic catalyst and is separable from solvents of catalytic reactions, confirming the nature of nanocatalysts. The present work closely investigates the unique physical and chemical features of this colloid, the formation mechanism, and the ability to act as basic nanocatalysts in benign aqueous reaction systems.

13.
ACS Appl Mater Interfaces ; 6(21): 19355-9, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25296395

RESUMO

Water vapor barriers are important in various application fields, such as food packaging and sealants in electronic devices. Polymer/clay composites are well-studied water vapor barrier materials, but their transparency and mechanical strength degrade with increasing clay loading. Herein, we demonstrate films with good water vapor barrier properties, high transparency, and mechanical/thermal stability. Water vapor barrier films were prepared by the solution crystallization of siloxane hybrid lamellae. The films consist of highly crystallized organic/inorganic hybrid lamellae, which provide high transparency, hardness, and thermal stability and inhibit the permeation of water vapor. The water permeability of a 6 µm thick hybrid film is comparable to that of a 200 µm thick silicon rubber film.

14.
ACS Appl Mater Interfaces ; 5(8): 3168-75, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23484882

RESUMO

Nanocomposite thin films formed by mesoporous titania layers loaded with ceria nanoparticles have been obtained by combining bottom-up self-assembly synthesis of a titania matrix with top-down hard X-ray lithography of nanocrystalline cerium oxide. At first the titania mesopores have been impregnated with the ceria precursor solution and then exposed to hard X-rays, which triggered the formation of crystalline cerium oxides within the pores inducing the in situ growth of nanoparticles with average size of 4 nm. It has been observed that the type of coordinating agent in the solution plays a primary role in the formation of nanoparticles. Different patterns have been also produced through deep X-ray lithography by spatially controlling the nanoparticle growth on the micrometer scale. The radical scavenging role of the nanocomposite films has been tested using as a benchmark the UV photodegradation of rhodamine 6G. After impregnation with a rhodamine 6G solution, samples with and without ceria have shown a remarkably different response upon exposure to UV light. The dye photodegradation on the surface of nanocomposite films appears strongly slowed down because of the antioxidation effect of ceria nanoparticles.

15.
Sci Rep ; 2: 683, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23002424

RESUMO

Stimuli-response on hierarchically-structured surface wrinkles is required for advanced filtration, catalysis and sensing applications. Although conventional processes can form hierarchical surface wrinkles, incorporation of stimuli-responsive features has not been achieved, limiting the potential multi-scale functionality of wrinkles. Here, we demonstrate a novel process that can fabricate stimuli-responsive surface hierarchical structures on silica-polymer hybrid films through precisely controlled UV-polymerization and sol-gel condensation. Starting from uniform hybrid films, UV excitation of the film surface triggers the formation of micrometre-scale wrinkles with dual periodicity. Hierarchical nested wrinkle (NW) structures with controllable periodic lengths at discrete size scales of < 10 µm and > 23 µm show a shape-memory effect with changes in the surrounding humidity. Moreover, the individual responses of wrinkles with different periodicities can be controlled independently. As a proof-of-concept application, we demonstrate that the NW structures are an active size-selective adsorption/release surface for micrometre-sized particles.


Assuntos
Materiais Biomiméticos/química , Polímeros/química , Dióxido de Silício/química , Acrilamidas/química , Animais , Técnicas Biossensoriais , Catálise , Filtração , Géis , Humanos , Umidade , Interações Hidrofóbicas e Hidrofílicas , Microscopia Confocal , Nanoestruturas/química , Povidona/química , Silanos/química , Pele/química , Envelhecimento da Pele , Propriedades de Superfície , Raios Ultravioleta
16.
Chem Commun (Camb) ; 48(49): 6130-2, 2012 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-22588181

RESUMO

Titanate nanofunnel brushes were grown on sol-gel derived amorphous TiO(2) thin films, whose shape can be tuned from nanosheets to nanofunnels by changing hydrothermal conditions. A superhydrophobic adhesive surface was achieved by a chemical modification of the brushes.

17.
J Colloid Interface Sci ; 352(2): 303-8, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20822775

RESUMO

The structure formation process of hierarchically porous alumina gels has been investigated by in situ small angle X-ray scattering (SAXS). The measurement was performed on the sol-gel solution containing aluminum chloride hexahydrate (AlCl(3)·6H(2)O), poly(ethylene oxide) (PEO), and propylene oxide (PO). The temporal divergence of scattering intensity in the low q regime was observed in the early stage of reaction, indicating that the occurrence of spinodal-decomposition-type phase separation. Detailed analysis of the SAXS profiles revealed that phase separation occurs between weakly branched polymerizing aluminum hydroxide (AH) and PEO. Further progress of the condensation reaction forms phase-separated two phases, that is, AH-rich phase and PEO-rich phase with the micrometer-range heterogeneity. The growth and aggregation of primary particles occurs in the phase-separated AH-rich domain, and therefore, the addition of PEO influences on the structure in nanometer regime as well as micrometer regime. The moderate stability of oligomeric species allows homogeneous condensation reaction parallel to phase separation and successful formation of hierarchically porous alumina gel.


Assuntos
Óxido de Alumínio/química , Metais/química , Compostos de Epóxi/química , Géis/química , Tamanho da Partícula , Polietilenoglicóis/química , Porosidade , Sais/química , Espalhamento a Baixo Ângulo , Propriedades de Superfície , Difração de Raios X
18.
J Colloid Interface Sci ; 338(2): 506-13, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-19646712

RESUMO

Detailed nanostructures have been investigated for hierarchically porous alumina aerogels and xerogels prepared from ionic precursors via sol-gel reaction. Starting from AlCl3.-6H2O and poly(ethylene oxide) (PEO) dissolved in a H2O/EtOH mixed solvent, monolithic wet gels were synthesized using propylene oxide (PO) as a gelation initiator. Hierarchically porous alumina xerogels and aerogels were obtained after evaporative drying and supercritical drying, respectively. Macroporous structures are formed as a result of phase separation, while interstices between the secondary particles in the micrometer-sized gel skeletons work as mesoporous structures. Alumina xerogels exhibit considerable shrinkage during the evaporative drying process, resulting in relatively small mesopores (from 5.4 to 6.2 nm) regardless of the starting composition. For shrinkage-free alumina aerogels, on the other hand, the median mesopore size changes from 13.9 to 33.1 nm depending on the starting composition; the increases in PEO content and H2O/EtOH volume ratio both contribute to producing smaller mesopores. Small-angle X-ray scattering (SAXS) analysis reveals that variation of median mesopore size can be ascribed to the change in agglomeration state of primary particles. As PEO content and H2O/EtOH ratio increase, secondary particles become small, which results in relatively small mesopores. The results indicate that the agglomeration state of alumina primary particles is influenced by the presence of weakly interacting phase separation inducers such as PEO.


Assuntos
Óxido de Alumínio/química , Géis/química , Etanol/química , Estrutura Molecular , Nanoestruturas/química , Tamanho da Partícula , Polietilenoglicóis/química , Porosidade , Propriedades de Superfície , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA