Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am Heart J ; 243: 1-10, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34453882

RESUMO

BACKGROUND: The prognostic importance of trajectories of neurohormones relative to left ventricular function over time in heart failure with reduced and mid-range EF (HFrEF and HFmrEF) is poorly defined. OBJECTIVE: To evaluate left ventricular ejection fraction (LVEF) and B-type natriuretic peptide (BNP) trajectories in HFrEF and HFmrEF. METHODS: Analyses of LVEF and BNP trajectories after incident HF admissions presenting with abnormal LV systolic function were performed using 3 methods: a Cox proportional hazards model with time-varying covariates, a dual longitudinal-survival model with shared random effects, and an unsupervised analysis to capture 3 discrete trajectories for each parameter. RESULTS: Among 1,158 patients (68.9 ± 13.0 years, 53.3% female), both time-varying LVEF measurements (P=.001) and log-transformed BNP measurements (p-values=2 × 10-16) were independently associated with survival during 6 years after covariate adjustment. In the dual longitudinal/survival model, both LVEF and BNP trajectories again were independently associated with survival (P<.0001 in each model); however, LVEF was more dynamic than BNP (P <.0001 for time covariate in LVEF longitudinal model versus P=.88 for the time covariate in BNP longitudinal model). In the unsupervised analysis, 3 discrete LVEF trajectories (dividing the cohort into approximately thirds) and 3 discrete BNP trajectories were identified. Discrete LVEF and BNP trajectories had independent prognostic value in Kaplan-Meier analyses (P<.0001), and substantial membership variability across BNP and LVEF trajectories was noted. CONCLUSION: Although LVEF trajectories have greater temporal variation, BNP trajectories provide additive prognostication and an even stronger association with survival times in heart failure patients with abnormal LV systolic function.


Assuntos
Insuficiência Cardíaca , Feminino , Humanos , Masculino , Peptídeo Natriurético Encefálico , Prognóstico , Volume Sistólico , Função Ventricular Esquerda
2.
Breast Cancer Res Treat ; 132(2): 487-98, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21647677

RESUMO

Normal mammary gland homeostasis requires the coordinated regulation of protein signaling networks. However, we have little prospective information on whether activation of protein signaling occurs in premalignant mammary epithelial cells, as represented by cells with cytological atypia from women who are at high risk for breast cancer. This information is critical for understanding the role of deregulated signaling pathways in the initiation of breast cancer and for developing targeted prevention and/or treatment strategies for breast cancer in the future. In this pilot and feasibility study, we examined the expression of 52 phosphorylated, total, and cleaved proteins in 31 microdissected Random Periareolar Fine Needle Aspiration (RPFNA) samples by high-throughput Reverse Phase Protein Microarray. Unsupervised hierarchical clustering analysis indicated the presence of four clusters of proteins that represent the following signaling pathways: (1) receptor tyrosine kinase/Akt/mammalian target of rapamycin (RTK/Akt/mTOR), (2) RTK/Akt/extracellular signal-regulated kinase (RTK/Akt/ERK), (3) mitochondrial apoptosis, and (4) indeterminate. Clusters 1 through 3 comprised moderately to highly expressed proteins, while Cluster 4 comprised proteins that are lowly expressed in a majority of RPFNA samples. Our exploratory study showed that the interlinked components of mitochondrial apoptosis pathway are highly expressed in all mammary epithelial cells obtained from high-risk women. In particular, the expression levels of anti-apoptotic Bcl-xL and pro-apoptotic Bad are positively correlated in both non-atypical and atypical samples (unadjusted P < 0.0001), suggesting a delicate balance between the pro-apoptotic and anti-apoptotic regulation of cell proliferation during the early steps of mammary carcinogenesis. Our feasibility study suggests that the activation of key proteins along the RTK/Akt pathway may tip this balance to cell survival. Taken together, our results demonstrate the feasibility of mapping proteomic signaling networks in limited RPFNA samples obtained from high-risk women and the promise of developing rational drug targets or preventative strategies for breast cancer in future proteomic studies with a larger cohort of high-risk women.


Assuntos
Proteínas Reguladoras de Apoptose/análise , Neoplasias da Mama/química , Proteínas de Ciclo Celular/análise , Glândulas Mamárias Humanas/química , Proteômica , Transdução de Sinais , Adulto , Idoso , Apoptose , Biópsia por Agulha Fina , Neoplasias da Mama/patologia , Sobrevivência Celular , Análise por Conglomerados , Estudos de Viabilidade , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Modelos Logísticos , Glândulas Mamárias Humanas/patologia , Microdissecção , Pessoa de Meia-Idade , North Carolina , Projetos Piloto , Estudos Prospectivos , Análise Serial de Proteínas , Proteômica/métodos , Medição de Risco , Fatores de Risco
3.
Front Cardiovasc Med ; 9: 756734, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509276

RESUMO

Racist and discriminatory federal, state, and local housing policies significantly contribute to disparities in cardiovascular disease incidence and mortality for individuals that self-identify as Black or African American. Here we highlight three key housing policies - "redlining," zoning, and the construction of highways - which have wrought a powerful, sustained, and destructive impact on cardiovascular health in Black/African American communities. Redlining and highway construction policies have restricted access to quality health care, increased exposure to carcinogens such as PM2.5, and increased exposure to extreme heat. At the root of these policy decisions are longstanding, toxic societal factors including racism, segregation, and discrimination, which also serve to perpetuate racial inequities in cardiovascular health. Here, we review these societal and structural factors and then link them with biological processes such as telomere shortening, allostatic load, oxidative stress, and tissue inflammation. Lastly, we focus on the impact of inflammation on the immune system and the molecular mechanisms by which the inflamed immune microenvironment promotes the formation of atherosclerotic plaques. We propose that racial residential segregation and discrimination increases tissue inflammation and cytokine production, resulting in dysregulated immune signaling, which promotes plaque formation and cardiovascular disease. This framework has the power to link structural racism not only to cardiovascular disease, but also to cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA