Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 135(6): 1257-71, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26442993

RESUMO

Several studies indicate that 17ß-estradiol (E2) protects against amyloid ß-peptide (Aß)-induced cell death and activates factors associated with learning and memory, a function involving the hippocampal somatostatinergic system. As alterations in somatostatin have been demonstrated in Alzheimer's disease, we examined whether E2 prevents changes in the hippocampal somatostatinergic system induced by Aß25-35 and cell death, as well as the possible involvement of leptin and insulin-like growth factor (IGF)-I signaling. We also measured the levels of Aß proteases neprilysin and insulin-degrading-enzyme. Co-administration of E2 with Aß25-35 reduced both its levels and cell death, in addition to preventing the Aß-induced depletion of some somatostatinergic parameters. Activation of leptin and IGF-I pathways increased after E2 co-administration, and this correlated with changes in the somatostatinergic system. Changes in some components of this system were inversely related with Aß levels and cell death. Moreover, neprilysin levels were increased only in Aß plus E2-treated rats and E2 prevented the Aß-induced insulin-degrading-enzyme reduction. Our results suggest that the E2-induced reduction in cell death is related to lower Aß levels, probably because of IGF-I and somatostatin modulation of Aß proteases. We asked how 17ß-estradiol (E2) protects against ß-amyloid (Aß)-induced cell death. E2 co-administration prevents Aß-produced depletion of hippocampal somatostatin (SRIF) by an IGF-I-mediated mechanism, being related this protective effect with an increase in Aß proteases. Our results suggest that the E2-induced reduction in cell death is related to lower Aß levels, probably because of SRIF modulation of Aß proteases. CREB, cAMP response element-binding protein; IGF-I, insulin-like growth factor-I; STAT3, signal transducer and activator of transcription-3.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Estradiol/farmacologia , Hipocampo/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Receptores de Somatostatina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Feminino , Hipocampo/metabolismo , Ratos Wistar , Somatostatina/metabolismo
2.
Cancers (Basel) ; 13(5)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800291

RESUMO

Dual specificity phosphatase 1 (DUSP1) is crucial in prostate cancer (PC), since its expression is downregulated in advanced carcinomas. Here, we investigated DUSP1 effects on the expression of mesenchymal marker Snail, cell migration and invasion, analyzing the underlying mechanisms mediated by mitogen-activated protein kinases (MAPKs) inhibition. To this purpose, we used different PC cells overexpressing or lacking DUSP1 or incubated with MAPKs inhibitors. Moreover, we addressed the correlation of DUSP1 expression with Snail and activated MAPKs levels in samples from patients diagnosed with benign hyperplasia or prostate carcinoma, studying its implication in tumor prognosis and survival. We found that DUSP1 downregulates Snail expression and impairs migration and invasion in PC cells. Similar results were obtained following the inhibition of c-Jun N-terminal kinase (JNK) and extracellular-signal-regulated kinase (ERK). In clinical samples, we evidenced an inverse correlation between DUSP1 expression and Snail levels, which are further associated with JNK and ERK activation. Consequently, the pattern DUSP1high/activated JNKlow/activated ERKlow/Snaillow is associated with an overall extended survival of PC patients. In summary, the ratio between DUSP1 and Snail expression, with additional JNK and ERK activity measurement, may serve as a potential biomarker to predict the clinical outcome of PC patients. Furthermore, DUSP1 induction or inhibition of JNK and ERK pathways could be useful to treat PC.

3.
Mol Oncol ; 8(1): 27-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24080497

RESUMO

Dual specificity phosphatase 1 (DUSP1) and the transcription factor NF-κB are implicated in prostate cancer since their expression levels are altered along this disease, although there are no evidences up to date demonstrating a crosstalk between them. In this report, we show for the first time that DUSP1 over-expression in DU145 cells promotes apoptosis and decreases NF-κB activity by blocking p65/NF-κB nuclear translocation. Moreover, although DUSP1 impairs TNF-α-induced p38 MAPK and JNK activation, only the specific inhibition of p38 MAPK exerts the same effects than DUSP1 over-expression on both apoptosis and NF-κB activity. Consistently, DUSP1 promotes apoptosis and decreases NF-κB activity in cells in which p38 MAPK is induced by TNF-α treatment. These results demonstrate that p38 MAPK is specifically involved in DUSP1-mediated effects on both apoptosis and NF-κB activity. Interestingly, we show an inverse correlation between DUSP1 expression and activation of both p65/NF-κB and p38 MAPK in human prostate tissue specimens. Thus, most of apparently normal glands, benign prostatic hyperplasia and low-grade prostatic intraepithelial neoplasia samples show high DUSP1 expression and low levels of both nuclear p65/NF-κB and activated p38 MAPK. By contrast, DUSP1 expression levels are low or even absent in high-grade prostatic intraepithelial neoplasia and prostatic adenocarcinoma samples, whereas nuclear p65/NF-κB and activated p38 MAPK are highly expressed in the same samples. Overall, our results provide evidence for a role of DUSP1 in the apoptosis of prostate cancer cells, through a mechanism involving the inhibition of p38 MAPK and NF-κB. Furthermore, our findings suggest that the ratio between DUSP1 and p65/NF-κB expression levels, rather than the individual expression of both molecules, is a better marker for diagnostic purposes in prostate cancer.


Assuntos
Apoptose , Fosfatase 1 de Especificidade Dupla/metabolismo , NF-kappa B/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular Tumoral , Fosfatase 1 de Especificidade Dupla/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Fosforilação , Próstata/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA