Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Anal Chem ; 88(18): 8957-64, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27531027

RESUMO

We report the development and initial evaluation of a 13 m path length Structures for Lossless Manipulations (SLIM) module for achieving high resolution separations using traveling waves (TW) with ion mobility (IM) spectrometry. The TW SLIM module was fabricated using two mirror-image printed circuit boards with appropriately configured RF, DC, and TW electrodes and positioned with a 2.75 mm intersurface gap. Ions were effectively confined in field-generated conduits between the surfaces by RF-generated pseudopotential fields and moved losslessly through a serpentine path including 44 "U" turns using TWs. The ion mobility resolution was characterized at different pressures, gaps between the SLIM surfaces, and TW and RF parameters. After initial optimization, the SLIM IM-MS module provided about 5-fold higher resolution separations than present commercially available drift tube or traveling wave IM-MS platforms. Peak capacity and peak generation rates achieved were 246 and 370 s(-1), respectively, at a TW speed of 148 m/s. The high resolution achieved in the TW SLIM IM-MS enabled, e.g., isomeric sugars (lacto-N-fucopentaose I and lacto-N-fucopentaose II) to be baseline resolved, and peptides from an albumin tryptic digest were much better resolved than with existing commercial IM-MS platforms. The present work also provides a foundation for the development of much higher resolution SLIM devices based upon both considerably longer path lengths and multipass designs.


Assuntos
Espectrometria de Massas/métodos , Oligossacarídeos/química , Soroalbumina Bovina/química , Animais , Bovinos , Eletrodos , Fenômenos Eletromagnéticos , Desenho de Equipamento , Íons/análise , Isomerismo , Espectrometria de Massas/instrumentação , Oligossacarídeos/análise , Peptídeos/análise
2.
Anal Chem ; 88(18): 8949-8956, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27479234

RESUMO

We report on ion mobility (IM) separations achievable using traveling waves (TW) in a Structures for Lossless Ion Manipulations (SLIM) module having a 44 cm path length and 16 90° turns. The performance of the TW-SLIM module was evaluated for ion transmission and IM separations with different RF, TW parameters, and SLIM surface gaps in conjunction with mass spectrometry. In this work, TWs were created by the transient and dynamic application of DC potentials. The module demonstrated highly robust performance and, even with 16 closely spaced turns, achieving IM resolution performance and ion transmission comparable to a similar straight path module. We found an IM peak capacity of ∼31 and peak generation rate of 780 s(-1) for TW speeds of ∼80 m/s using the current multi-turn TW-SLIM module. The separations achieved for isomers of peptides and tetrasaccharides were found to be comparable to those from a ∼0.9-m drift tube-based IM-MS platform operated at the same pressure (4 Torr). The combined attributes of flexible design, low voltage requirements and lossless ion transmission through multiple turns for the present TW-SLIM module provides a basis for SLIM devices capable of achieving much greater IM resolution via greatly extended ion path lengths and using compact serpentine designs.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Algoritmos , Sequência de Aminoácidos , Bradicinina/análise , Desenho de Equipamento , Íons/química
3.
Anal Chem ; 88(3): 1728-33, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26752262

RESUMO

The integration of ion mobility spectrometry (IMS) with mass spectrometry (MS) and the ability to trap ions in IMS-MS measurements is of great importance for performing reactions, accumulating ions, and increasing analytical measurement sensitivity. The development of Structures for Lossless Ion Manipulations (SLIM) offers the potential for ion manipulations in an extended and more effective manner, while opening opportunities for many more complex sequences of manipulations. Here, we demonstrate an ion separation and trapping module and a method based upon SLIM that consists of a linear mobility ion drift region, a switch/tee and a trapping region that allows the isolation and accumulation of mobility-separated species. The operation and optimization of the SLIM switch/tee and trap are described and demonstrated for the enrichment of the low abundance ions. A linear improvement in ion intensity was observed with the number of trapping/accumulation events using the SLIM trap, illustrating its potential for enhancing the sensitivity of low abundance or targeted species.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Humanos , Íons/química , Conformação Proteica
4.
Anal Chem ; 87(12): 6010-6, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25971536

RESUMO

A new Structures for Lossless Ion Manipulations (SLIM) module, having electrode arrays patterned on a pair of parallel printed circuit boards (PCB), was constructed and utilized to investigate capabilities for ion trapping at a pressure of 4 Torr. Positive ions were confined by application of RF voltages to a series of inner rung electrodes with alternating phase on adjacent electrodes, in conjunction with positive DC potentials on surrounding guard electrodes on each PCB. An axial DC field was also introduced by stepwise varying the DC potentials applied to the inner rung electrodes to control the ion transport and accumulation inside the ion trapping region. We show that ions can be trapped and accumulated with up to 100% efficiency, stored for at least 5 h with no significant losses, and then could be rapidly ejected from the SLIM trap. The present results provide a foundation for the development of much more complex SLIM devices that facilitate extended ion manipulations.


Assuntos
Espectrometria de Massas/instrumentação , Eletrodos , Íons/análise
5.
Anal Chem ; 87(22): 11301-8, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26510005

RESUMO

We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.


Assuntos
Íons/isolamento & purificação , Eletrodos , Íons/química , Ondas de Rádio , Propriedades de Superfície
6.
Analyst ; 140(20): 6845-52, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26289106

RESUMO

The process of redirecting ions through 90° turns and 'tee' switches utilizing Structures for Lossless Ion Manipulations (SLIM) was evaluated at 4 Torr pressure using SIMION simulations and theoretical methods. The nature of pseudo-potential in SLIM-tee structures has also been explored. Simulations show that 100% transmission efficiency in SLIM devices can be achieved with guard electrode voltages lower than ∼10 V. The ion plume width in these conditions is ∼1.6 mm while at lower guard voltages lead to greater plume widths. Theoretical calculations show marginal loss of ion mobility resolving power (<5%) during ion turn due to the finite plume widths (i.e. race track effect). More robust SLIM designs that reduce the race track effect while maximizing ion transmission are also reported. In addition to static turns, the dynamic switching of ions into orthogonal channels was also evaluated both using SIMION ion trajectory simulations and experimentally. Simulations and theoretical calculations were in close agreement with experimental results and were used to develop more refined SLIM designs.


Assuntos
Espectrometria de Massas/métodos , Modelos Teóricos , Movimento (Física) , Pressão
7.
Anal Chem ; 86(11): 5295-9, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24786390

RESUMO

Ion mobility instruments that utilize nitrogen as buffer gas are often preceded by an ion trap and accumulation region that also uses nitrogen, and for different inert gases, no significant effects upon performance are expected for ion mobility spectrometry (IMS) of larger ions. However, we have observed significantly improved performance for an ion funnel trap upon adding helium; the signal intensities for higher m/z species were improved by more than an order of magnitude compared to using pure nitrogen. The effect of helium upon IMS resolving power was also studied by introducing a He/N2 gas mixture into the drift cell, and in some cases, a slight improvement was observed compared to pure N2. The improvement in signal can be largely attributed to faster and more efficient ion ejection into the drift tube from the ion funnel trap.


Assuntos
Hélio/análise , Algoritmos , Soluções Tampão , Íons/química , Espectrometria de Massas , Nitrogênio/química , Hidrolisados de Proteína/química , Soroalbumina Bovina/química
8.
Anal Chem ; 86(18): 9162-8, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25152178

RESUMO

Structures for Lossless Ion Manipulation (SLIM) represent a novel class of ion optical devices based upon electrodes patterned on planar surfaces, and relying on a combined action of radiofrequency and DC electric fields and specific buffer gas density conditions. Initial experimental studies have demonstrated the feasibility of the SLIM concept. This report offers an in-depth consideration of key ion dynamics properties in such devices based upon ion optics theory and computational modeling. The SLIM devices investigated are formed by two surfaces, each having an array of radiofrequency (RF) "rung" electrodes, bordered by DC "guard" electrodes. Ion motion is confined by the RF effective potential in the direction orthogonal to the boards and limited or controlled in the transversal direction by the guard DC potentials. Ions can be efficiently trapped and stored in SLIM devices where the confinement of ions can be "soft" in regard to the extent of collisional activation, similarly to RF-only multipole ion guides and traps. The segmentation of the RF rung electrodes and guards along the axis makes it possible to apply static or transient electric field profiles to stimulate ion transfer within a SLIM. In the case of a linear DC gradient applied to RF rungs and guards, a virtually uniform electric field can be created along the axis of the device, enabling high quality ion mobility separations.


Assuntos
Espectrometria de Massas/instrumentação , Eletricidade , Eletrodos , Íons/química , Ondas de Rádio
9.
Anal Chem ; 86(19): 9632-7, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25222548

RESUMO

A Structures for Lossless Ion Manipulations (SLIM) module that allows ion mobility separations and the switching of ions between alternative drift paths is described. The SLIM switch component has a "Tee" configuration and allows the efficient switching of ions between a linear path and a 90-degree bend. By controlling switching times, ions can be efficiently directed to an alternative channel as a function of their mobilities. In the initial evaluation the switch is used in a static mode and shown compatible with high performance ion mobility separations at 4 Torr. In the dynamic mode, we show that mobility-selected ions can be switched into the alternative channel, and that various ion species can be independently selected based on their mobilities for time-of-flight mass spectrometer (TOF MS) IMS detection and mass analysis. This development also provides the basis of, for example, the selection of specific mobilities for storage and accumulation, and the key component of modules for the assembly of SLIM devices enabling much more complex sequences of ion manipulations.


Assuntos
Espectrometria de Massas/métodos , Estrutura Molecular
10.
Anal Chem ; 86(18): 9169-76, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25152066

RESUMO

We report on the performance of structures for lossless ion manipulation (SLIM) as a means for transmitting ions and performing ion mobility separations (IMS). Ions were successfully transferred from an electrospray ionization (ESI) source to the TOF MS analyzer by means of a linear SLIM, demonstrating lossless ion transmission and an alternative arrangement including a 90° turn. First, the linear geometry was optimized for radial confinement by tuning RF on the central "rung" electrodes and potentials on the DC-only guard electrodes. Selecting an appropriate DC guard bias (2-6 V) and RF amplitude (≥160 V(p-p) at 750 kHz) resulted in the greatest ion intensities. Close to ideal IMS resolving power was maintained over a significant range of applied voltages. Second, the 90° turn was optimized for radial confinement by tuning RF on the rung electrodes and DC on the guard electrodes. However, both resolving power and ion transmission showed a dependence on these voltages, and the best conditions for both were >300 V(p-p) RF (685 kHz) and 7-11 V guard DC bias. Both geometries provide IMS resolving powers at the theoretical limit (R ~ 58), showing that degraded resolution from a "racetrack" effect from turning around a corner can be successfully avoided, and the capability also was maintained for essentially lossless ion transmission.


Assuntos
Espectrometria de Massas por Ionização por Electrospray/instrumentação , Eletricidade , Eletrodos , Íons/química , Ondas de Rádio , Espectrometria de Massas por Ionização por Electrospray/métodos
11.
J Proteome Res ; 11(4): 2091-102, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22375802

RESUMO

Induced pluripotent stem cells (iPSC) hold great promise for regenerative medicine as well as for investigations into the pathogenesis and treatment of various diseases. Understanding of key intracellular signaling pathways and protein targets that control development of iPSC from somatic cells is essential for designing new approaches to improve reprogramming efficiency. Here, we report the development and application of an integrated quantitative proteomics platform for investigating differences in protein expressions between mouse embryonic fibroblasts (MEF) and MEF-derived iPSC. This platform consists of 16O/18O labeling, multidimensional peptide separation coupled with tandem mass spectrometry, and data analysis with UNiquant software. With this platform, a total of 2481 proteins were identified and quantified from the 16O/18O-labeled MEF-iPSC proteome mixtures with a false discovery rate of 0.01. Among them, 218 proteins were significantly upregulated, while 247 proteins were significantly downregulated in iPSC compared to MEF. Many nuclear proteins, including Hdac1, Dnmt1, Pcna, Ccnd1, Smarcc1, and subunits in DNA replication and RNA polymerase II complex, were found to be enhanced in iPSC. Protein network analysis revealed that Pcna functions as a hub orchestrating complicated mechanisms including DNA replication, epigenetic inheritance (Dnmt1), and chromatin remodeling (Smarcc1) to reprogram MEF and maintain stemness of iPSC.


Assuntos
Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Marcação por Isótopo/métodos , Proteoma/análise , Proteômica/métodos , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Camundongos , Isótopos de Oxigênio/análise , Isótopos de Oxigênio/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo
12.
J Proteome Res ; 10(3): 1228-37, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21158445

RESUMO

Stable isotope labeling (SIL) methods coupled with nanoscale liquid chromatography and high resolution tandem mass spectrometry are increasingly useful for elucidation of the proteome-wide differences between multiple biological samples. Development of more effective programs for the sensitive identification of peptide pairs and accurate measurement of the relative peptide/protein abundance are essential for quantitative proteomic analysis. We developed and evaluated the performance of a new program, termed UNiquant, for analyzing quantitative proteomics data using stable isotope labeling. UNiquant was compared with two other programs, MaxQuant and Mascot Distiller, using SILAC-labeled complex proteome mixtures having either known or unknown heavy/light ratios. For the SILAC-labeled Jeko-1 cell proteome digests with known heavy/light ratios (H/L = 1:1, 1:5, and 1:10), UNiquant quantified a similar number of peptide pairs as MaxQuant for the H/L = 1:1 and 1:5 mixtures. In addition, UNiquant quantified significantly more peptides than MaxQuant and Mascot Distiller in the H/L = 1:10 mixtures. UNiquant accurately measured relative peptide/protein abundance without the need for postmeasurement normalization of peptide ratios, which is required by the other programs.


Assuntos
Marcação por Isótopo/métodos , Peptídeos/análise , Proteínas/análise , Proteômica/métodos , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Humanos , Dados de Sequência Molecular , Peptídeos/genética , Proteínas/genética , Proteoma/análise , Software , Espectrometria de Massas em Tandem/métodos
13.
Anal Chem ; 83(24): 9552-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22060180

RESUMO

Secondary ion mass spectrometry (SIMS) has seen increased application for high spatial resolution chemical imaging of complex biological surfaces. The advent and commercial availability of cluster and polyatomic primary ion sources (e.g., Au and Bi cluster and buckminsterfullerene (C(60))) provide improved secondary ion yield and decreased fragmentation of surface species, thus improving accessibility of intact molecular ions for SIMS analysis. However, full exploitation of the advantages of these new primary ion sources has been limited, due to the use of low mass resolution mass spectrometers without tandem MS to enable enhanced structural identification capabilities. Similarly, high mass resolution and high mass measurement accuracy would greatly improve the chemical specificity of SIMS. Here we combine, for the first time, the advantages of a C(60) primary ion source with the ultrahigh mass resolving power and high mass measurement accuracy of Fourier transform ion cyclotron resonance mass spectrometry. Mass resolving power in excess of 100 000 (m/Δm(50%)) is demonstrated, with a root-mean-square mass measurement accuracy below 1 part-per-million. Imaging of mouse brain tissue at 40 µm pixel size is shown. Tandem mass spectrometry of ions from biological tissue is demonstrated and molecular formulas were assigned for fragment ion identification.


Assuntos
Fulerenos/química , Espectrometria de Massa de Íon Secundário , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Colesterol/análise , Feminino , Análise de Fourier , Gramicidina/química , Camundongos , Polietilenoglicóis/química
14.
Mass Spectrom Rev ; 29(2): 294-312, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-19391099

RESUMO

The electrodynamic ion funnel has enabled the manipulation and focusing of ions in a pressure regime (0.1-30 Torr) that has challenged traditional approaches, and provided the basis for much greater mass spectrometer ion transmission efficiencies. The initial ion funnel implementations aimed to efficiently capture ions in the expanding gas jet of an electrospray ionization interface and radially focus them for efficient transfer through a conductance limiting orifice. We review the improvements in fundamental understanding of ion motion in ion funnels, the evolution in its implementations that have brought the ion funnel to its current state of refinement, as well as applications of the ion funnel for purposes such as ion trapping, ion cooling, low pressure electrospray, and ion mobility spectrometry.


Assuntos
Modelos Teóricos , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Íons , Espalhamento de Radiação
15.
Anal Chem ; 82(22): 9344-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21028835

RESUMO

Inefficient ionization and poor transmission of the charged species produced by an electrospray from the ambient pressure mass spectrometer source into the high vacuum region required for mass analysis significantly limits achievable sensitivity. Here, we present evidence that, when operated at flow rates of 50 nL/min, a new electrospray-based ion source operated at ∼20 Torr can deliver ∼50% of the analyte ions initially in the solution as charged desolvated species into the rough vacuum region of mass spectrometers. The ion source can be tuned to optimize the analyte signal for readily ionized species while reducing the background contribution.


Assuntos
Nanotecnologia/métodos , Pressão , Espectrometria de Massas por Ionização por Electrospray/métodos , Dióxido de Carbono/química , Íons , Nanotecnologia/instrumentação , Solventes/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação
16.
Anal Chem ; 81(12): 4778-87, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19438247

RESUMO

Ion mobility spectrometry (IMS) has been increasingly employed in a number of applications. When coupled to mass spectrometry (MS), IMS becomes a powerful analytical tool for separating complex samples and investigating molecular structure. Therefore, improvements in IMS-MS instrumentation, e.g., IMS resolving power and sensitivity, are highly desirable. Implementation of an ion trap for accumulation and pulsed ion injection to IMS based on the ion funnel has provided considerably increased ion currents and thus a basis for improved sensitivity and measurement throughput. However, large ion populations may manifest Coulombic effects contributing to the spatial dispersion of ions traveling in the IMS drift tube and reduction in the IMS resolving power. In this study, we present an analysis of Coulombic effects on IMS resolution. Basic relationships have been obtained for the spatial evolution of ion packets due to Coulombic repulsion. The analytical relationships were compared with results of a computer model that simulates IMS operation based on a first principles approach. Initial experimental results reported here are consistent with the computer modeling. A noticeable decrease in the IMS resolving power was observed for ion populations of >10,000 elementary charges. The optimum IMS operation conditions which would minimize the Coulombic effects are discussed.


Assuntos
Íons/análise , Espectrometria de Massas/métodos , Angiotensina I/análise , Íons/química , Espectrometria de Massas/instrumentação , Modelos Teóricos
17.
Int J Mass Spectrom ; 281(1-3): 32-38, 2009 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20473360

RESUMO

Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS) remains the technique of choice for the analysis of intact proteins from complex biological systems, i.e. top-down proteomics. Recently, we have implemented a compensated open cylindrical ion trapping cell into a 12 T FT-ICR mass spectrometer. This new cell has previously demonstrated improved sensitivity, dynamic range, and mass measurement accuracy for the analysis of relatively small tryptic peptides. These improvements are due to the modified trapping potential of the cell which closely approximates the ideal harmonic trapping potential. Here, we report the instrument optimization for the analysis of large macro-molecular ions, such as proteins. Single transient mass spectra of multiply charged bovine ubiquitin ions with sub-ppm mass measurement accuracy, improved signal intensity, and increased dynamic range were obtained using this new cell with increased post-excitation cyclotron radii. The increased cyclotron radii correspond to increased ion kinetic energy and collisions between neutrals and ions with sufficient kinetic energy can exceed a threshold of single collision ion fragmentation. A transition then occurs from relatively long signal lifetimes at low excitation radii to potentially shorter lifetimes, defined by the average ion-neutral collision time. The proposed high energy ion loss mechanism is evaluated and compared with experimental results for bovine ubiquitin and serum albumin. We find that the analysis of large macro-molecules can be significantly improved by the further reduction of pressure in the ion trapping cell. This reduces the high energy ion losses and can enable increased sensitivity and mass measurement accuracy to be realized without compromising resolution. Further, these results appear to be generally applicable to FTMS, and it is expected that the high energy ion loss mechanism also applies to Orbitrap mass analyzers.

18.
Anal Chem ; 80(22): 8514-25, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18855412

RESUMO

Hybrid FTMS instruments, such as the LTQ-FT and LTQ-Orbitrap, are capable of generating high duty cycle linear ion trap MS/MS data along with high resolution information without compromising the overall throughput of measurements. Combined with online LC separations, these instruments provide powerful capabilities for proteomics research. In the present work, we explore three alternative strategies for high throughput proteomics measurements using hybrid FTMS instruments. Our accurate mass and time tag (AMT tag) strategy enables identification of thousands of peptides in a single LC-FTMS analysis by comparing accurate molecular mass and LC elution time information from the analysis to a reference database. An alternative strategy considered here, termed accurate precursor mass filter (APMF), employs linear ion trap (low resolution) MS/MS identifications generated by an appropriate search engine, such as SEQUEST, refined with high resolution precursor ion data obtained from FTMS mass spectra. The APMF results can be additionally filtered using the LC elution time information from the AMT tag database, which constitutes a precursor mass and time filter (PMTF), the third approach implemented in this study. Both the APMF and the PMTF approaches are evaluated for coverage and confidence of peptide identifications and contrasted with the AMT tag strategy. The commonly used decoy database method and an alternative method based on mass accuracy histograms were used to reliably quantify identification confidence, revealing that both methods yielded similar results. Comparison of the AMT, APMF and PMTF approaches indicates that the AMT tag approach is preferential for studies desiring a highest achievable number of identified peptides. In contrast, the APMF approach does not require an AMT tag database and provides a moderate level of peptide coverage combined with acceptable confidence values of approximately 99%. The PMTF approach yielded a significantly better peptide identification confidence, >99.9%, that essentially excluded any false peptide identifications. Since AMT tag databases that exclude incorrect identifications are desirable, this study points to the value of a multipass APMF approach to generate AMT tag databases, which are then validated using the PMTF approach. The resulting compact, high quality databases can then be used for subsequent high-throughput, high peptide coverage AMT tag studies.


Assuntos
Análise de Fourier , Espectrometria de Massas/instrumentação , Proteômica/métodos , Cromatografia Líquida , Peptídeos/análise , Peptídeos/metabolismo , Sensibilidade e Especificidade , Shewanella/enzimologia , Espectrometria de Massas em Tandem , Fatores de Tempo , Tripsina/metabolismo
19.
J Am Soc Mass Spectrom ; 19(4): 586-97, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18296061

RESUMO

The trapped-ion cell is a key component critical for optimal performance in Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry (MS). To extend the performance of FT-ICR MS, we have developed a new cell design that is capable of generating a DC trapping potential which closely approaches that of an ideal Penning trap, i.e., a 3D axial quadrupolar potential distribution. The new cell design was built upon an open cylindrical geometry, supplemented with two pairs of cylindrical compensation segments. Electric potential calculations for trial cell geometries were aimed at minimizing spatial variations of the radial electric field divided by radius. The resulting cell proportions and compensation voltages delivered practically constant effective ion cyclotron frequency that was independent of ion radial and axial positions. Our customized 12 tesla FT-ICR instrument was upgraded with the new cell, and the performance was characterized for a range of ion excitation power and ion populations. Operating the compensated cell at increased postexcitation radii, approximately 0.7 of the cell inner radius, resulted in improved mass measurement accuracy together with increased signal intensity. Under these same operating conditions the noncompensated open cell configuration exhibited peak splitting and reduced signal life time. Mass accuracy tests using 11 calibrants covering a wide m/z range reproducibly produced under 0.05 ppm RMS precision of the internal calibration for reduced ion populations and the optimal excitation radius. Conditions of increased ion population resulted in a twofold improvement in mass accuracy compared with the noncompensated cell, due to the larger achievable excitation radii and correspondingly lower space charge related perturbations of the calibration law.


Assuntos
Peptídeos/química , Espectroscopia de Infravermelho com Transformada de Fourier/instrumentação , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Angiotensinas/química , Bradicinina/química , Calibragem , Ciclotrons , Endorfinas/química , Fibrinopeptídeo A/química , Neurotensina/química , Renina/antagonistas & inibidores , Renina/química , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização por Electrospray , Substância P/química
20.
J Am Soc Mass Spectrom ; 18(7): 1176-87, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17512752

RESUMO

The ability of ion mobility spectrometry coupled with mass spectrometry (IMS-MS) to characterize biological mixtures has been illustrated over the past eight years. However, the challenges posed by the extreme complexity of many biological samples have demonstrated the need for higher resolution IMS-MS measurements. We have developed a higher resolution ESI-IMS-TOF MS by utilizing high-pressure electrodynamic ion funnels at both ends of the IMS drift cell and operating the drift cell at an elevated pressure compared with that conventionally used. The ESI-IMS-TOF MS instrument consists of an ESI source, an hourglass ion funnel used for ion accumulation/injection into an 88 cm drift cell, followed by a 10 cm ion funnel and a commercial orthogonal time-of-flight mass spectrometer providing high mass measurement accuracy. It was found that the rear ion funnel could be effectively operated as an extension of the drift cell when the DC fields were matched, providing an effective drift region of 98 cm. The resolution of the instrument was evaluated at pressures ranging from 4 to 12 torr and ion mobility drift voltages of 16 V/cm (4 torr) to 43 V/cm (12 torr). An increase in resolution from 55 to 80 was observed from 4 to 12 torr nitrogen drift gas with no significant loss in sensitivity. The choice of drift gas was also shown to influence the degree of ion heating and relative trapping efficiency within the ion funnel.


Assuntos
Biopolímeros/química , Gases/química , Espectrometria de Massas por Ionização por Electrospray/instrumentação , Espectrometria de Massas por Ionização por Electrospray/métodos , Biopolímeros/análise , Desenho de Equipamento , Análise de Falha de Equipamento , Gases/análise , Íons , Pressão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA