Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Leukemia ; 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223295

RESUMO

Leukemia, although most likely starts as a monoclonal genetic/epigenetic anomaly, is a polyclonal disease at manifestation. This polyclonal nature results from ongoing evolutionary changes in the genome/epigenome of leukemia cells to promote their survival and proliferation advantages. We discuss here how genetic and/or epigenetic aberrations alter intracellular microenvironment in individual leukemia clones and how extracellular microenvironment selects the best fitted clones. This dynamic polyclonal composition of leukemia makes designing an effective therapy a challenging task especially because individual leukemia clones often display substantial differences in response to treatment. Here, we discuss novel therapeutic approach employing single cell multiomics to identify and eradicate all individual clones in a patient.

2.
Mol Cancer Res ; 21(10): 1017-1022, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37358557

RESUMO

DNA polymerase theta (Polθ, encoded by POLQ gene) plays an essential role in Polθ-mediated end-joining (TMEJ) of DNA double-strand breaks (DSB). Inhibition of Polθ is synthetic lethal in homologous recombination (HR)-deficient tumor cells. However, DSBs can be also repaired by PARP1 and RAD52-mediated mechanisms. Because leukemia cells accumulate spontaneous DSBs, we tested if simultaneous targeting of Polθ and PARP1 or RAD52 enhance the synthetic lethal effect in HR-deficient leukemia cells. Transformation potential of the oncogenes inducing BRCA1/2-deficiency (BCR-ABL1 and AML1-ETO) was severely limited in Polq-/-;Parp1-/- and Polq-/-;Rad52-/- cells when compared with single knockouts, which was associated with accumulation of DSBs. Small-molecule inhibitor of Polθ (Polθi) when combined with PARP or RAD52 inhibitors (PARPi, RAD52i) caused accumulation of DSBs and exerted increased effect against HR-deficient leukemia and myeloproliferative neoplasm cells. IMPLICATIONS: In conclusion, we show that PARPi or RAD52i might improve therapeutic effect of Polθi against HR-deficient leukemias.


Assuntos
Leucemia , Mutações Sintéticas Letais , Humanos , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteína BRCA2/genética , Recombinação Homóloga , Leucemia/genética , Reparo do DNA , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Poli(ADP-Ribose) Polimerase-1/genética , DNA Polimerase teta
3.
Mol Cancer Ther ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064712

RESUMO

Anticancer nucleosides are effective against solid tumors and hematological malignancies, but typically are prone to nucleoside metabolism resistance mechanisms. Using a nucleoside-specific multiplexed high-throughput screening approach, we discovered 4'-ethynyl-2'-deoxycytidine (EdC) as a third-generation anticancer nucleoside prodrug with preferential activity against diffuse large B-cell lymphoma (DLBCL) and acute lymphoblastic leukemia (ALL). EdC requires deoxycytidine kinase (DCK) phosphorylation for its activity and induced replication fork arrest and accumulation of cells in S-phase, indicating it acts as a chain terminator. A 2.1Å co-crystal structure of DCK bound to EdC and UDP reveals how the rigid 4'-alkyne of EdC fits within the active site of DCK. Remarkably, EdC was resistant to cytidine deamination and SAMHD1 metabolism mechanisms and exhibited higher potency against ALL compared to FDA approved nelarabine. Finally, EdC was highly effective against DLBCL tumors and B-ALL in vivo. These data characterize EdC as a pre-clinical nucleoside prodrug candidate for DLBCL and ALL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA