Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
BMC Plant Biol ; 24(1): 218, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532351

RESUMO

BACKGROUND: In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. RESULTS: The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3-/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3-/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. CONCLUSIONS: Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.


Assuntos
Compostos de Amônio , Anemia Hipocrômica , Deficiências de Ferro , Vitis , Nitrogênio/metabolismo , Nitratos/metabolismo , Anemia Hipocrômica/metabolismo , Vitis/genética , Compostos de Amônio/metabolismo , Raízes de Plantas/metabolismo
2.
Physiol Plant ; 175(5): e14021, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882311

RESUMO

A fully mechanistic dynamical model for plant nitrate uptake is presented. Based on physiological and regulatory pathways and based on physical laws, we form a dynamic system mathematically described by seven differential equations. The model evidences the presence of a short-term positive feedback on the high-affinity nitrate uptake, triggered by the presence of nitrate around the roots, which induces its intaking. In the long run, this positive feedback is overridden by two long-term negative feedback loops which drastically reduces the nitrate uptake capacity. These two negative feedbacks are due to the generation of ammonium and amino acids, respectively, and inhibit the synthesis and the activity of high-affinity nitrate transporters. This model faithfully predicts the typical spiking behavior of the nitrate uptake, in which an initial strong increase of nitrate absorption capacity is followed by a drop, which regulates the absorption down to the initial value. The model outcome was compared with experimental data and they fit quite nicely. The model predicts that after the initial exposure of the roots with nitrate, the absorption of the anion strongly increases and that, on the contrary, the intensity of the absorption is limited in presence of ammonium around the roots.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/farmacologia , Nitratos/metabolismo , Zea mays/metabolismo , Transportadores de Nitrato , Plantas/metabolismo , Compostos de Amônio/metabolismo , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo
3.
Physiol Plant ; 174(1): e13607, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34837246

RESUMO

The low bioavailability of nutrients, especially nitrogen (N) and phosphorus (P), is one of the most limiting factors for crop production. In this study, under N- and P-free nutrient solution (-N-P), nodulating white lupin plants developed some nodules and analogous cluster root structures characterized by different morphological, physiological, and molecular responses than those observed upon single nutrient deficiency (strong acidification of external media, a better nutritional status than -N+P and +N-P plants). The multi-elemental analysis highlighted that the concentrations of nutrients in white lupin plants were mainly affected by P availability. Gene-expression analyses provided evidence of interconnections between N and P nutritional pathways that are active to promote N and P balance in plants. The root exudome was mainly characterized by N availability in nutrient solution, and, in particular, the absence of N and P in the nutrient solution triggered a high release of phenolic compounds, nucleosides monophosphate and saponines by roots. These morphological, physiological, and molecular responses result from a close interplay between N and P nutritional pathways. They contribute to the good development of nodulating white lupin plants when grown on N- and P-free media. This study provides evidence that limited N and P availability in the nutrient solution can promote white lupin-Bradyrhizobium symbiosis, which is favourable for the sustainability of legume production.


Assuntos
Bradyrhizobium , Lupinus , Bradyrhizobium/fisiologia , Lupinus/metabolismo , Fixação de Nitrogênio/fisiologia , Fósforo/metabolismo , Raízes de Plantas/metabolismo
4.
Physiol Plant ; 173(3): 935-953, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34245168

RESUMO

The simultaneous presence of different N-forms in the rhizosphere leads to beneficial effects on nitrogen (N) nutrition in plants. Although widely used as fertilizers, the occurrence of cross connection between urea and ammonium nutrition has been scarcely studied in plants. Maize fed with a mixture of urea and ammonium displayed a better N-uptake efficiency than ammonium- or urea-fed plants (Buoso et al., Plant Physiol Biochem, 2021a; 162: 613-623). Through multiomic approaches, we provide the molecular characterization of maize response to urea and ammonium nutrition. Several transporters and enzymes involved in N-nutrition were upregulated by all three N-treatments (urea, ammonium, or urea and ammonium). Already after 1 day of treatment, the availability of different N-forms induced specific transcriptomic and metabolomic responses. The combination of urea and ammonium induced a prompt assimilation of N, characterized by high levels of some amino acids in shoots. Moreover, ZmAMT1.1a, ZmGLN1;2, ZmGLN1;5, ZmGOT1, and ZmGOT3, as well transcripts involved in glycolysis-TCA cycle were induced in roots by urea and ammonium mixture. Depending on N-form, even changes in the composition of phytohormones were observed in maize. This study paves the way to formulate guidelines for the optimization of N fertilization to improve N-use efficiency in maize and therefore limit N-losses in the environment.


Assuntos
Compostos de Amônio , Zea mays , Compostos de Amônio/metabolismo , Fertilizantes , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Transcriptoma , Ureia , Zea mays/genética , Zea mays/metabolismo
5.
Plant Mol Biol ; 101(1-2): 129-148, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31267256

RESUMO

Iron and phosphorus are abundant elements in soils but poorly available for plant nutrition. The availability of these two nutrients represents a major constraint for fruit tree cultivation such as apple (Malus × domestica) leading very often to a decrease of fruit productivity and quality worsening. Aim of this study was to characterize common and specific features of plant response to Fe and P deficiencies by ionomic, transcriptomic and exudation profiling of apple roots. Under P deficiency, the root release of oxalate and flavonoids increased. Genes encoding for transcription factors and transporters involved in the synthesis and release of root exudates were upregulated by P-deficient roots, as well as those directly related to P acquisition. In Fe-deficiency, plants showed an over-accumulation of P, Zn, Cu and Mn and induced the transcription of those genes involved in the mechanisms for the release of Fe-chelating compounds and Fe mobilization inside the plants. The intriguing modulation in roots of some transcription factors, might indicate that, in this condition, Fe homeostasis is regulated by a FIT-independent pathway. In the present work common and specific features of apple response to Fe and P deficiency has been reported. In particular, data indicate similar modulation of a. 230 genes, suggesting the occurrence of a crosstalk between the two nutritional responses involving the transcriptional regulation, shikimate pathway, and the root release of exudates.


Assuntos
Deficiências de Ferro , Malus/fisiologia , Fósforo/deficiência , Transcriptoma , Transporte Biológico , Perfilação da Expressão Gênica , Homeostase , Ferro/metabolismo , Malus/genética , Fósforo/metabolismo , Exsudatos de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Análise de Sequência de RNA
6.
Int J Mol Sci ; 20(22)2019 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717351

RESUMO

Nitrogen (N) deficiency is one of the major stresses that crops are exposed to. It is plausible to suppose that a stress condition can induce a memory in plants that might prime the following generations. Here, an experimental setup that considered four successive generations of N-sufficient and N-limited Arabidopsis was used to evaluate the existence of a transgenerational memory. The results demonstrated that the ability to take up high amounts of nitrate is induced more quickly as a result of multigenerational stress exposure. This behavior was paralleled by changes in the expression of nitrate responsive genes. RNAseq analyses revealed the enduring modulation of genes in downstream generations, despite the lack of stress stimulus in these plants. The modulation of signaling and transcription factors, such as NIGTs, NFYA and CIPK23 might indicate that there is a complex network operating to maintain the expression of N-responsive genes, such as NRT2.1, NIA1 and NIR. This behavior indicates a rapid acclimation of plants to changes in N availability. Indeed, when fourth generation plants were exposed to N limitation, they showed a rapid induction of N-deficiency responses. This suggests the possible involvement of a transgenerational memory in Arabidopsis that allows plants to adapt efficiently to the environment and this gives an edge to the next generation that presumably will grow in similar stressful conditions.


Assuntos
Arabidopsis/fisiologia , Nitrogênio/deficiência , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Fatores de Tempo
7.
BMC Genomics ; 18(1): 154, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193158

RESUMO

BACKGROUND: Under limited iron (Fe) availability maize, a Strategy II plant, improves Fe acquisition through the release of phytosiderophores (PS) into the rhizosphere and the subsequent uptake of Fe-PS complexes into root cells. Occurrence of Strategy-I-like components and interactions with phosphorous (P) nutrition has been hypothesized based on molecular and physiological studies in grasses. RESULTS: In this report transcriptomic analysis (NimbleGen microarray) of Fe deficiency response revealed that maize roots modulated the expression levels of 724 genes (508 up- and 216 down-regulated, respectively). As expected, roots of Fe-deficient maize plants overexpressed genes involved in the synthesis and release of 2'-deoxymugineic acid (the main PS released by maize roots). A strong modulation of genes involved in regulatory aspects, Fe translocation, root morphological modification, primary metabolic pathways and hormonal metabolism was induced by the nutritional stress. Genes encoding transporters for Fe2+ (ZmNRAMP1) and P (ZmPHT1;7 and ZmPHO1) were also up-regulated under Fe deficiency. Fe-deficient maize plants accumulated higher amounts of P than the Fe-sufficient ones, both in roots and shoots. The supply of 1 µM 59Fe, as soluble (Fe-Citrate and Fe-PS) or sparingly soluble (Ferrihydrite) sources to deficient plants, caused a rapid down-regulation of genes coding for PS and Fe(III)-PS transport, as well as of ZmNRAMP1 and ZmPHT1;7. Levels of 32P absorption essentially followed the rates of 59Fe uptake in Fe-deficient plants during Fe resupply, suggesting that P accumulation might be regulated by Fe uptake in maize plants. CONCLUSIONS: The transcriptional response to Fe-deficiency in maize roots confirmed the modulation of known genes involved in the Strategy II and revealed the presence of Strategy I components usually described in dicots. Moreover, data here presented provide evidence of a close relationship between two essential nutrients for plants, Fe and P, and highlight a key role played by Fe and P transporters to preserve the homeostasis of these two nutrients in maize plants.


Assuntos
Perfilação da Expressão Gênica , Deficiências de Ferro , Fosfatos/metabolismo , Transcriptoma , Zea mays/genética , Zea mays/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/química , Ferro/metabolismo , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Solubilidade
8.
BMC Genomics ; 17: 35, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26742479

RESUMO

BACKGROUND: It is well known that in the rhizosphere soluble Fe sources available for plants are mainly represented by a mixture of complexes between the micronutrient and organic ligands such as carboxylates and phytosiderophores (PS) released by roots, as well as fractions of humified organic matter. The use by roots of these three natural Fe sources (Fe-citrate, Fe-PS and Fe complexed to water-extractable humic substances, Fe-WEHS) have been already studied at physiological level but the knowledge about the transcriptomic aspects is still lacking. RESULTS: The (59)Fe concentration recorded after 24 h in tissues of tomato Fe-deficient plants supplied with (59)Fe complexed to WEHS reached values about 2 times higher than those measured in response to the supply with Fe-citrate and Fe-PS. However, after 1 h no differences among the three Fe-chelates were observed considering the (59)Fe concentration and the root Fe(III) reduction activity. A large-scale transcriptional analysis of root tissue after 1 h of Fe supply showed that Fe-WEHS modulated only two transcripts leaving the transcriptome substantially identical to Fe-deficient plants. On the other hand, Fe-citrate and Fe-PS affected 728 and 408 transcripts, respectively, having 289 a similar transcriptional behaviour in response to both Fe sources. CONCLUSIONS: The root transcriptional response to the Fe supply depends on the nature of chelating agents (WEHS, citrate and PS). The supply of Fe-citrate and Fe-PS showed not only a fast back regulation of molecular mechanisms modulated by Fe deficiency but also specific responses due to the uptake of the chelating molecule. Plants fed with Fe-WEHS did not show relevant changes in the root transcriptome with respect to the Fe-deficient plants, indicating that roots did not sense the restored cellular Fe accumulation.


Assuntos
Compostos Férricos/farmacologia , Proteínas de Plantas/biossíntese , Raízes de Plantas/genética , Solanum lycopersicum/genética , Quelantes/química , Compostos Férricos/química , Ferro/química , Ferro/metabolismo , Ligantes , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Sideróforos/química
9.
Plant Cell Physiol ; 56(3): 532-48, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25524070

RESUMO

Even though urea and nitrate are the two major nitrogen (N) forms applied as fertilizers in agriculture and occur concomitantly in soils, the reciprocal influence of these two N sources on the mechanisms of their acquisition are poorly understood. Therefore, molecular and physiological aspects of urea and nitrate uptake were investigated in maize (Zea mays), a crop plant consuming high amounts of N. In roots, urea uptake was stimulated by the presence of urea in the external solution, indicating the presence of an inducible transport system. On the other hand, the presence of nitrate depressed the induction of urea uptake and, at the same time, the induction of nitrate uptake was depressed by the presence of urea. The expression of about 60,000 transcripts of maize in roots was monitored by microarray analyses and the transcriptional patterns of those genes involved in nitrogen acquisition were analyzed by real-time reverse transcription-PCR (RT-PCR). In comparison with the treatment without added N, the exposure of maize roots to urea modulated the expression of only very few genes, such as asparagine synthase. On the other hand, the concomitant presence of urea and nitrate enhanced the overexpression of genes involved in nitrate transport (NRT2) and assimilation (nitrate and nitrite reductase, glutamine synthetase 2), and a specific response of 41 transcripts was determined, including glutamine synthetase 1-5, glutamine oxoglutarate aminotransferase, shikimate kinase and arogenate dehydrogenase. Also based on the real-time RT-PCR analysis, the transcriptional modulation induced by both sources might determine an increase in N metabolism promoting a more efficient assimilation of the N that is taken up.


Assuntos
Nitratos/metabolismo , Nitrogênio/metabolismo , Transcriptoma/genética , Ureia/metabolismo , Zea mays/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Biomassa , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Nitratos/farmacologia , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transcrição Gênica/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ureia/farmacologia , Zea mays/efeitos dos fármacos
10.
Physiol Plant ; 154(1): 82-94, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25288471

RESUMO

Iron (Fe) sources available for plants in the rhizospheric solution are mainly a mixture of complexes between Fe and organic ligands, including phytosiderophores (PS) and water-extractable humic substances (WEHS). In comparison with the other Fe sources, Fe-WEHS are more efficiently used by plants, and experimental evidences show that Fe translocation contributes to this better response. On the other hand, very little is known on the mechanisms involved in Fe allocation in leaves. In this work, physiological and molecular processes involved in Fe distribution in leaves of Fe-deficient Cucumis sativus supplied with Fe-PS or Fe-WEHS up to 5 days were studied combining different techniques, such as radiochemical experiments, synchrotron micro X-ray fluorescence, real-time reverse transcription polymerase chain reaction and in situ hybridization. In Fe-WEHS-fed plants, Fe was rapidly (1 day) allocated into the leaf veins, and after 5 days, Fe was completely transferred into interveinal cells; moreover, the amount of accumulated Fe was much higher than with Fe-PS. This redistribution in Fe-WEHS plants was associated with an upregulation of genes encoding a ferric(III) -chelate reductase (FRO), a Fe(2+) transporter (IRT1) and a natural resistance-associated macrophage protein (NRAMP). The localization of FRO and IRT1 transcripts next to the midveins, beside that of NRAMP in the interveinal area, may suggest a rapid and efficient response induced by the presence of Fe-WEHS in the extra-radical solution for the allocation in leaves of high amounts of Fe. In conclusion, Fe is more efficiently used when chelated to WEHS than PS and seems to involve Fe distribution and gene regulation of Fe acquisition mechanisms operating in leaves.


Assuntos
Cucumis sativus/metabolismo , Fertilizantes , Deficiências de Ferro , Folhas de Planta/metabolismo , Substâncias Húmicas , Hibridização In Situ , Ferro/administração & dosagem , Radioisótopos de Ferro , Sideróforos , Espectrometria por Raios X , Síncrotrons
11.
BMC Plant Biol ; 14: 222, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25168432

RESUMO

BACKGROUND: Despite its extensive use as a nitrogen fertilizer, the role of urea as a directly accessible nitrogen source for crop plants is still poorly understood. So far, the physiological and molecular aspects of urea acquisition have been investigated only in few plant species highlighting the importance of a high-affinity transport system. With respect to maize, a worldwide-cultivated crop requiring high amounts of nitrogen fertilizer, the mechanisms involved in the transport of urea have not yet been identified. The aim of the present work was to characterize the high-affinity urea transport system in maize roots and to identify the high affinity urea transporter. RESULTS: Kinetic characterization of urea uptake (<300 µM) demonstrated the presence in maize roots of a high-affinity and saturable transport system; this system is inducible by urea itself showing higher Vmax and Km upon induction. At molecular level, the ORF sequence coding for the urea transporter, ZmDUR3, was isolated and functionally characterized using different heterologous systems: a dur3 yeast mutant strain, tobacco protoplasts and a dur3 Arabidopsis mutant. The expression of the isolated sequence, ZmDUR3-ORF, in dur3 yeast mutant demonstrated the ability of the encoded protein to mediate urea uptake into cells. The subcellular targeting of DUR3/GFP fusion proteins in tobacco protoplasts gave results comparable to the localization of the orthologous transporters of Arabidopsis and rice, suggesting a partial localization at the plasma membrane. Moreover, the overexpression of ZmDUR3 in the atdur3-3 Arabidopsis mutant showed to complement the phenotype, since different ZmDUR3-overexpressing lines showed either comparable or enhanced 15[N]-urea influx than wild-type plants. These data provide a clear evidence in planta for a role of ZmDUR3 in urea acquisition from an extra-radical solution. CONCLUSIONS: This work highlights the capability of maize plants to take up urea via an inducible and high-affinity transport system. ZmDUR3 is a high-affinity urea transporter mediating the uptake of this molecule into roots. Data may provide a key to better understand the mechanisms involved in urea acquisition and contribute to deepen the knowledge on the overall nitrogen-use efficiency in crop plants.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/metabolismo , Zea mays/metabolismo , Arabidopsis , Proteínas de Fluorescência Verde , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Protoplastos , Análise de Sequência de RNA , Nicotiana , Transportadores de Ureia
12.
Plant Physiol Biochem ; 211: 108666, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723490

RESUMO

Nitrogen (N) is the nutrient most applied in agriculture as fertilizer (as nitrate, Nit; ammonium, A; and/or urea, U, forms) and its availability strongly constrains the crop growth and yield. To investigate the early response (24 h) of N-deficient tomato plants to these three N forms, a physiological and molecular study was performed. In comparison to N-deficient plants, significant changes in the transcriptional, metabolomic and ionomic profiles were observed. As a probable consequence of N mobility in plants, a wide metabolic modulation occurred in old leaves rather than in young leaves. The metabolic profile of U and A-treated plants was more similar than Nit-treated plant profile, which in turn presented the lowest metabolic modulation with respect to N-deficient condition. Urea and A forms induced some changes at the biosynthesis of secondary metabolites, amino acids and phytohormones. Interestingly, a specific up-regulation by U and down-regulation by A of carbon synthesis occurred in roots. Along with the gene expression, data suggest that the specific N form influences the activation of metabolic pathways for its assimilation (cytosolic GS/AS and/or plastidial GS/GOGAT cycle). Urea induced an up-concentration of Cu and Mn in leaves and Zn in whole plant. This study highlights a metabolic reprogramming depending on the N form applied, and it also provide evidence of a direct relationship between urea nutrition and Zn concentration. The understanding of the metabolic pathways activated by the different N forms represents a milestone in improving the efficiency of urea fertilization in crops.


Assuntos
Compostos de Amônio , Nitratos , Solanum lycopersicum , Ureia , Ureia/metabolismo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Nitratos/metabolismo , Compostos de Amônio/metabolismo , Folhas de Planta/metabolismo , Metabolômica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Metaboloma , Fertilizantes , Nitrogênio/metabolismo
13.
Anal Bioanal Chem ; 405(10): 3341-50, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23392411

RESUMO

Iron (Fe) is an essential element for plant growth and development; hence determining Fe distribution and concentration inside plant organs at the microscopic level is of great relevance to better understand its metabolism and bioavailability through the food chain. Among the available microanalytical techniques, synchrotron µ-XRF methods can provide a powerful and versatile array of analytical tools to study Fe distribution within plant samples. In the last years, the implementation of new algorithms and detection technologies has opened the way to more accurate (semi)quantitative analyses of complex matrices like plant materials. In this paper, for the first time the distribution of Fe within tomato roots has been imaged and quantified by means of confocal µ-XRF and exploiting a recently developed fundamental parameter-based algorithm. With this approach, Fe concentrations ranging from few hundreds of ppb to several hundreds of ppm can be determined at the microscopic level without cutting sections. Furthermore, Fe (semi)quantitative distribution maps were obtained for the first time by using two opposing detectors to collect simultaneously the XRF radiation emerging from both sides of an intact cucumber leaf.


Assuntos
Cucumis sativus/química , Ferro/análise , Solanum lycopersicum/química , Espectrometria por Raios X/métodos , Fluorescência , Folhas de Planta/química , Raízes de Plantas/química , Espectrometria por Raios X/instrumentação , Síncrotrons
14.
Anal Bioanal Chem ; 405(16): 5411-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23609785

RESUMO

The development of highly brilliant synchrotron facilities all around the world is opening the way to new research in biological sciences including speciation studies of trace elements in plants. In this paper, for the first time, iron (Fe) speciation in xylem sap has been assessed by X-ray absorption near-edge structure (XANES) spectroscopy at the highly brilliant synchrotron PETRA III, beamline P06. Both standard organic Fe-complexes and xylem sap samples of Fe-deficient tomato plants were analyzed. The high photon flux provided by this X-ray synchrotron source allows on one side to obtain good XANES spectra in a reasonable amount of time (approx. 15 min for 200 eV scan) at low Fe concentrations (sub parts-per-million), while on the other hand may cause radiation damage to the sample, despite the sample being cooled by a stream of liquid nitrogen vapor. Standard Fe-complexes such as Fe(III)-succinate, Fe(III)-α-ketoglutarate, and Fe(III)-nicotianamine are somehow degraded when irradiated with synchrotron X-rays and Fe(III) can undergo photoreduction. Degradation of the organic molecules was assessed by HPLC-UV/Vis analyses on the same samples investigated by X-ray absorption spectroscopy (XAS). Fe speciation in xylem sap samples revealed Fe(III) to be complexed by citrate and acetate. Nevertheless, artifacts created by radiation damage cannot be excluded. The use of highly brilliant synchrotrons as X-ray sources for XAS analyses can dramatically increase the sensitivity of the technique for trace elements thus allowing their speciation in xylem sap. However, great attention must be paid to radiation damage, which can lead to biased results.


Assuntos
Ferro/análise , Espectroscopia por Absorção de Raios X/métodos , Xilema/metabolismo , Acetatos/química , Acetatos/metabolismo , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/química , Ácido Azetidinocarboxílico/metabolismo , Citratos/química , Citratos/metabolismo , Desenho de Equipamento , Compostos Férricos/análise , Compostos Férricos/metabolismo , Ferro/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Succinatos/química , Succinatos/metabolismo , Síncrotrons , Espectroscopia por Absorção de Raios X/instrumentação , Raios X , Xilema/química
15.
J Sci Food Agric ; 93(15): 3891-6, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24037763

RESUMO

BACKGROUND: Plants differ in their response to high aluminium (Al) concentrations, which typically cause toxicity in plants grown on acidic soils. The response depends on plant species and environmental conditions such as substrate and cultivation system. The present study aimed to assess Al-phosphate (P) dynamics in the rhizosphere of two bean species, Phaseolus vulgaris L. var. Red Kidney and Phaseolus lunatus L., in rhizobox experiments. RESULTS: Root activity of the bean species induced up to a sevenfold increase in exchangeable Al and up to a 30-fold decrease in extractable P. High soluble Al concentrations triggered the release of plant-specific carboxylates, which differed between soil type and plant species. The results suggest that P. vulgaris L. mitigates Al stress by an internal defence mechanism and P. lunatus L. by an external one, both mechanisms involving organic acids. CONCLUSION: Rhizosphere mechanisms involved in Al detoxification were found to be different for P. vulgaris L. and P. lunatus L., suggesting that these processes are plant species-specific. Phaseolus vulgaris L. accumulates Al in the shoots (internal tolerance mechanism), while P. lunatus L. prevents Al uptake by releasing organic acids (exclusion mechanism) into the growth media.


Assuntos
Adaptação Fisiológica , Compostos de Alumínio/metabolismo , Alumínio/metabolismo , Phaseolus/microbiologia , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Solo , Ácidos Carboxílicos/metabolismo , Phaseolus/classificação , Fósforo/metabolismo , Brotos de Planta/metabolismo , Especificidade da Espécie , Estresse Fisiológico
16.
Plant Sci ; 336: 111825, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572967

RESUMO

In plants the communication between organs is mainly carried out via the xylem and phloem. The concentration and the molecular species of some phytohormones, assimilates and inorganic ions that are translocated in the xylem vessel play a key role in the systemic nutritional signaling in plants. In this work the composition of the xylem sap of maize was investigated at the metabolic and ionomic level depending on the N form available in the nutrient solution. Plants were grown up to 7 days in hydroponic system under N-free nutrient solution or nutrient solution containing N in form of nitrate, urea, ammonium or a combination of urea and ammonium. For the first time this work provides evidence that the ureic nutrition reduced the water translocation in maize plants more than mineral N forms. This result correlates with those obtained from the analyses of photosynthetic parameters (stomatal conductance and transpiration rate) suggesting a parsimonious use of water by maize plants under urea nutrition. A peculiar composition in amino acids and phytohormones (i.e. S, Gln, Pro, ABA) of the xylem sap under urea nutrition could explain differences in xylem sap exudation in comparison to plants treated with mineral N forms. The knowledge improvement of urea nutrition will allow to further perform good agronomic strategies to improve the resilience of maize crop to water stress.


Assuntos
Compostos de Amônio , Nitratos , Nitratos/metabolismo , Zea mays/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ureia/farmacologia , Ureia/metabolismo , Nitrogênio/metabolismo , Compostos de Amônio/metabolismo , Folhas de Planta/metabolismo , Xilema/metabolismo , Metaboloma , Minerais/metabolismo , Minerais/farmacologia , Raízes de Plantas/metabolismo
17.
BMC Genomics ; 13: 101, 2012 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-22433273

RESUMO

BACKGROUND: Plants react to iron deficiency stress adopting different kind of adaptive responses. Tomato, a Strategy I plant, improves iron uptake through acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Large-scale transcriptional analyses of roots under iron deficiency are only available for a very limited number of plant species with particular emphasis for Arabidopsis thaliana. Regarding tomato, an interesting model species for Strategy I plants and an economically important crop, physiological responses to Fe-deficiency have been thoroughly described and molecular analyses have provided evidence for genes involved in iron uptake mechanisms and their regulation. However, no detailed transcriptome analysis has been described so far. RESULTS: A genome-wide transcriptional analysis, performed with a chip that allows to monitor the expression of more than 25,000 tomato transcripts, identified 97 differentially expressed transcripts by comparing roots of Fe-deficient and Fe-sufficient tomato plants. These transcripts are related to the physiological responses of tomato roots to the nutrient stress resulting in an improved iron uptake, including regulatory aspects, translocation, root morphological modification and adaptation in primary metabolic pathways, such as glycolysis and TCA cycle. Other genes play a role in flavonoid biosynthesis and hormonal metabolism. CONCLUSIONS: The transcriptional characterization confirmed the presence of the previously described mechanisms to adapt to iron starvation in tomato, but also allowed to identify other genes potentially playing a role in this process, thus opening new research perspectives to improve the knowledge on the tomato root response to the nutrient deficiency.


Assuntos
Genômica , Deficiências de Ferro , Análise de Sequência com Séries de Oligonucleotídeos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Adaptação Fisiológica/genética , Transporte Biológico/genética , Metabolismo dos Carboidratos/genética , Flavonoides/biossíntese , Perfilação da Expressão Gênica , Homeostase/genética , Hormônios/metabolismo , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/citologia , Metionina/metabolismo , Estresse Oxidativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/citologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/genética , Transcrição Gênica/genética
18.
BMC Plant Biol ; 12: 66, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22571503

RESUMO

BACKGROUND: The mechanisms by which nitrate is transported into the roots have been characterized both at physiological and molecular levels. It has been demonstrated that nitrate is taken up in an energy-dependent way by a four-component uptake machinery involving high- and low- affinity transport systems. In contrast very little is known about the physiology of nitrate transport towards different plant tissues and in particular at the leaf level. RESULTS: The mechanism of nitrate uptake in leaves of cucumber (Cucumis sativus L. cv. Chinese long) plants was studied and compared with that of the root. Net nitrate uptake by roots of nitrate-depleted cucumber plants proved to be substrate-inducible and biphasic showing a saturable kinetics with a clear linear non saturable component at an anion concentration higher than 2 mM. Nitrate uptake by leaf discs of cucumber plants showed some similarities with that operating in the roots (e.g. electrogenic H+ dependence via involvement of proton pump, a certain degree of induction). However, it did not exhibit typical biphasic kinetics and was characterized by a higher Km with values out of the range usually recorded in roots of several different plant species. The quantity and activity of plasma membrane (PM) H+-ATPase of the vesicles isolated from leaf tissues of nitrate-treated plants for 12 h (peak of nitrate foliar uptake rate) increased with respect to that observed in the vesicles isolated from N-deprived control plants, thus suggesting an involvement of this enzyme in the leaf nitrate uptake process similar to that described in roots. Molecular analyses suggest the involvement of a specific isoform of PM H+-ATPase (CsHA1) and NRT2 transporter (CsNRT2) in root nitrate uptake. At the leaf level, nitrate treatment modulated the expression of CsHA2, highlighting a main putative role of this isogene in the process. CONCLUSIONS: Obtained results provide for the first time evidence that a saturable and substrate-inducible nitrate uptake mechanism operates in cucumber leaves. Its activity appears to be related to that of PM H+-ATPase activity and in particular to the induction of CsHA2 isoform. However the question about the molecular entity responsible for the transport of nitrate into leaf cells therefore still remains unresolved.


Assuntos
Membrana Celular/enzimologia , Cucumis sativus/enzimologia , Nitratos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Transporte Biológico , Membrana Celular/genética , Membrana Celular/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/genética , Regulação para Cima
19.
Planta ; 236(6): 1701-12, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22983671

RESUMO

Cadmium (Cd) detoxification involves glutathione and phytochelatins biosynthesis: the higher need of nitrogen should require increased nitrate (NO(3)(-)) uptake and metabolism. We investigated inducible high-affinity NO(3)(-) uptake across the plasma membrane (PM) in maize seedlings roots upon short exposure (10 min to 24 h) to low Cd concentrations (0, 1 or 10 µM): the activity and gene transcript abundance of high-affinity NO(3)(-) transporters, NO(3)(-) reductases and PM H(+)-ATPases were analyzed. Exposure to 1 mM NO(3)(-) led to a peak in high-affinity (0.2 mM) NO(3)(-) uptake rate (induction), which was markedly lowered in Cd-treated roots. Plasma membrane H(+)-ATPase activity was also strongly limited, while internal NO(3)(-) accumulation and NO(3)(-) reductase activity in extracts of Cd treated roots were only slightly lowered. Kinetics of high- and low-affinity NO(3)(-) uptake showed that Cd rapidly (10 min) blocked the inducible high-affinity transport system; the constitutive high-affinity transport system appeared not vulnerable to Cd and the low-affinity transport system appeared to be less affected and only after a prolonged exposure (12 h). Cd-treatment also modified transcript levels of genes encoding high-affinity NO(3)(-) transporters (ZmNTR2.1, ZmNRT2.2), PM H(+)-ATPases (ZmMHA3, ZmMHA4) and NO(3)(-) reductases (ZmNR1, ZmNADH:NR). Despite an expectable increase in NO(3)(-) demand, a negative effect of Cd on NO(3)(-) nutrition is reported. Cd effect results in alterations at the physiological and transcriptional levels of NO(3)(-) uptake from the external solution and it is particularly severe on the inducible high-affinity anion transport system. Furthermore, Cd would limit the capacity of the plant to respond to changes in NO(3) (-) availability.


Assuntos
Cádmio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nitratos/metabolismo , Proteínas de Plantas/genética , Zea mays/efeitos dos fármacos , Transporte Biológico , Cádmio/análise , Membrana Celular/enzimologia , Cinética , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/análise , Nitrogênio/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Zea mays/genética , Zea mays/metabolismo
20.
J Sci Food Agric ; 91(2): 344-54, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-20960459

RESUMO

BACKGROUND: Unbalanced nutrient availability causes disequilibrated plant growth, which can result in a worsening of harvested product quality, such as high nitrate content in edible tissues. To cope with this problem, improved knowledge of the mechanisms involved in nutrient acquisition and regulation is necessary. For this purpose the responses of acquisition mechanisms of N, Fe and S were studied as a function of Fe and S availability using two corn salad cultivars grown hydroponically, considering also aspects related to N metabolism. RESULTS: The results showed that an increase in Fe or S availability enhanced nitrate uptake and assimilation, which in turn increased biomass production of leaves with lower nitrate content. In particular, high S availability exerted a positive effect (gene expression and functionality) both on the uptake and metabolism of N and on Fe acquisition mechanisms. CONCLUSION: The data presented here show close interactions between N, S and Fe, highlighting that relevant improvements in yield and quality from soilless culture might also be obtained through appropriate adjustments of nutrient availability. In this respect, concerning the role of S in the acquisition mechanisms of N and Fe and in N metabolism, its level of availability should be taken into high consideration for equilibrated plant growth.


Assuntos
Agricultura/métodos , Ferro/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Sulfatos/metabolismo , Enxofre/metabolismo , Valerianella/crescimento & desenvolvimento , Transporte Biológico , Biomassa , Fertilizantes , Expressão Gênica , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Valerianella/metabolismo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA