Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 112(7): 072501, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24579591

RESUMO

The electromagnetic dipole strength below the neutron-separation energy has been studied for the xenon isotopes with mass numbers A=124, 128, 132, and 134 in nuclear resonance fluorescence experiments using the γELBE bremsstrahlung facility at Helmholtz-Zentrum Dresden-Rossendorf and the HIγS facility at Triangle Universities Nuclear Laboratory Durham. The systematic study gained new information about the influence of the neutron excess as well as of nuclear deformation on the strength in the region of the pygmy dipole resonance. The results are compared with those obtained for the chain of molybdenum isotopes and with predictions of a random-phase approximation in a deformed basis. It turned out that the effect of nuclear deformation plays a minor role compared with the one caused by neutron excess. A global parametrization of the strength in terms of neutron and proton numbers allowed us to derive a formula capable of predicting the summed E1 strengths in the pygmy region for a wide mass range of nuclides.

2.
Phys Rev Lett ; 111(11): 112501, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074078

RESUMO

We have carried out photodisintegration cross-section measurements on 86Kr using monoenergetic photon beams ranging from the neutron separation energy, S(n) = 9.86 MeV, to 13 MeV. We combine our experimental 86Kr(γ,n)85Kr cross section with results from our recent 86Kr(γ,γ') measurement below the neutron separation energy to obtain the complete nuclear dipole response of 86Kr. The new experimental information is used to predict the neutron capture cross section of 85Kr, an important branching point nucleus on the abundance flow path during s-process nucleosynthesis. Our new and more precise 85Kr(n,γ)86Kr cross section allows us to produce more precise predictions of the 86Kr abundance from s-process models. In particular, we find that the models of the s process in asymptotic giant branch stars of mass <1.5M⊙, where the 13C neutron source burns convectively rather than radiatively, represent a possible solution for the highest 86Kr:82Kr ratios observed in meteoritic stardust SiC grains.

3.
Phys Rev Lett ; 110(2): 022503, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383897

RESUMO

The M1 excitations in the nuclide 90Zr have been studied in a photon-scattering experiment with monoenergetic and linearly polarized beams from 7 to 11 MeV. More than 40 J(π)=1+ states have been identified from observed ground-state transitions, revealing the fine structure of the giant M1 resonance with a centroid energy of 9 MeV and a sum strength of 4.17(56) µ(N)(2). The result for the total M1 strength and its fragmentation are discussed in the framework of the three-phonon quasiparticle-phonon model.

4.
Appl Radiat Isot ; 195: 110742, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36857814

RESUMO

Two samples, one of natural iridium and the other of enriched 193Ir, were irradiated with a monoenergetic neutron beam of energy 6.0 MeV at the Triangle Universities Nuclear Laboratory. The product of the 193Ir [Formula: see text] Ir reaction was determined by means of measuring X-rays following electron conversion of the isomeric state at 80.2 keV in 193Ir. The cross section for inelastic neutron scattering is reported disagreeing with the literature data.

5.
Phys Rev Lett ; 108(4): 042502, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22400829

RESUMO

The two-body photodisintegration cross section of (4)He into a proton and triton was measured with monoenergetic photon beams in 0.5 MeV energy steps between 22 and 30 MeV. High-pressure (4)He-Xe gas scintillators of various (4)He/Xe ratios served as targets and detectors. Pure Xe gas scintillators were used for background studies. A NaI detector together with a plastic scintillator paddle was employed for determining the incident photon flux. Our comprehensive data set follows the trend of the theoretical calculations of the Trento group very well, although our data are consistently lower in magnitude by about 5%. However, they differ significantly from the majority of the previous data, especially from the recent data of Shima et al. The latter data had put into question the validity of theoretical approaches used to calculate core-collapse supernova explosions and big-bang nucleosynthesis abundances of certain light nuclei.


Assuntos
Raios gama , Hélio/química , Trítio/química , Modelos Químicos , Processos Fotoquímicos , Radioatividade , Xenônio/química
6.
Phys Rev Lett ; 104(7): 072501, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366874

RESUMO

High-sensitivity studies of E1 and M1 transitions observed in the reaction 138Ba(gamma,gamma{'}) at energies below the one-neutron separation energy have been performed using the nearly monoenergetic and 100% linearly polarized photon beams of the HIgammaS facility. The electric dipole character of the so-called "pygmy" dipole resonance was experimentally verified for excitations from 4.0 to 8.6 MeV. The fine structure of the M1 "spin-flip" mode was observed for the first time in N=82 nuclei.

7.
Phys Rev Lett ; 88(1): 012502, 2002 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-11800940

RESUMO

The quality and intensity of gamma rays at the High Intensity gamma-ray Source are shown to make nuclear resonance fluorescence studies possible at a new level of precision and efficiency. First experiments have been carried out using an intense (10(7) gamma/s) beam of 100% linearly polarized, nearly monoenergetic, gamma rays on the semimagic nucleus (138)Ba. Negative parity quantum numbers have been assigned to 18 dipole excitations of (138)Ba between 5.5 MeV and 6.5 MeV from azimuthal gamma-intensity asymmetries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA