Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
N Engl J Med ; 372(2): 142-52, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25482145

RESUMO

BACKGROUND: Lenalidomide plus dexamethasone is a reference treatment for relapsed multiple myeloma. The combination of the proteasome inhibitor carfilzomib with lenalidomide and dexamethasone has shown efficacy in a phase 1 and 2 study in relapsed multiple myeloma. METHODS: We randomly assigned 792 patients with relapsed multiple myeloma to carfilzomib with lenalidomide and dexamethasone (carfilzomib group) or lenalidomide and dexamethasone alone (control group). The primary end point was progression-free survival. RESULTS: Progression-free survival was significantly improved with carfilzomib (median, 26.3 months, vs. 17.6 months in the control group; hazard ratio for progression or death, 0.69; 95% confidence interval [CI], 0.57 to 0.83; P=0.0001). The median overall survival was not reached in either group at the interim analysis. The Kaplan-Meier 24-month overall survival rates were 73.3% and 65.0% in the carfilzomib and control groups, respectively (hazard ratio for death, 0.79; 95% CI, 0.63 to 0.99; P=0.04). The rates of overall response (partial response or better) were 87.1% and 66.7% in the carfilzomib and control groups, respectively (P<0.001; 31.8% and 9.3% of patients in the respective groups had a complete response or better; 14.1% and 4.3% had a stringent complete response). Adverse events of grade 3 or higher were reported in 83.7% and 80.7% of patients in the carfilzomib and control groups, respectively; 15.3% and 17.7% of patients discontinued treatment owing to adverse events. Patients in the carfilzomib group reported superior health-related quality of life. CONCLUSIONS: In patients with relapsed multiple myeloma, the addition of carfilzomib to lenalidomide and dexamethasone resulted in significantly improved progression-free survival at the interim analysis and had a favorable risk-benefit profile. (Funded by Onyx Pharmaceuticals; ClinicalTrials.gov number, NCT01080391.).


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Dexametasona/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Oligopeptídeos/administração & dosagem , Talidomida/análogos & derivados , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Dexametasona/efeitos adversos , Feminino , Humanos , Análise de Intenção de Tratamento , Estimativa de Kaplan-Meier , Lenalidomida , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/mortalidade , Oligopeptídeos/efeitos adversos , Recidiva , Talidomida/administração & dosagem , Talidomida/efeitos adversos
2.
J Liposome Res ; 21(1): 70-80, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20528623

RESUMO

Liposomes, such as pegylated-liposomal CKD-602 (S-CKD602), undergo catabolism by macrophages and dendritic cells (DCs) of the reticuloendothelial system (RES). The relationship between plasma and tumor disposition of S-CKD602 and RES was evaluated in mice bearing A375 melanoma or SKOV-3 ovarian xenografts. Area under the concentration-time curves (AUCs) of liposomal encapsulated, released, and sum total (encapsulated + released) CKD-602 in plasma, tumor, and tumor extracellular fluid (ECF) were estimated. A375 and SKOV-3 tumors were stained with cd11b and cd11c antibodies as measures of macrophages and DC. The plasma disposition of S-CKD602 was similar in both xenograft models. The ratio of tumor sum total AUC to plasma sum total AUC was 1.7-fold higher in mice bearing human SKOV-3 xenografts, compared with A375. The ratio of tumor ECF AUC to tumor sum total AUC was 2-fold higher in mice bearing human SKOV-3 xenografts, compared with A375. The staining of cd11c was 4.5-fold higher in SKOV-3, compared with A375 (P < 0.0001). The increased tumor delivery and release of CKD-602 from S-CKD602 in the ovarian xenografts, compared with the melanoma xenografts, was consistent with increased cd11c staining, suggesting that variability in the RES may affect the tumor disposition of liposomal agents.


Assuntos
Camptotecina/análogos & derivados , Sistema Fagocitário Mononuclear/efeitos dos fármacos , Inibidores da Topoisomerase I/farmacocinética , Animais , Área Sob a Curva , Camptotecina/farmacocinética , Camptotecina/farmacologia , Cromatografia Líquida , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Espectrometria de Massas , Camundongos , Inibidores da Topoisomerase I/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Clin Cancer Res ; 13(23): 7217-23, 2007 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18056203

RESUMO

PURPOSE: S-CKD602 is a STEALTH liposomal formulation of CKD-602, a camptothecin analogue. The cytotoxicity of camptothecin analogues is related to the duration of exposure in the tumor. STEALTH liposomal formulations contain lipid conjugated to methoxypolyethylene glycol and have been designed to prolong drug circulation time, increase tumor delivery, and improve the therapeutic index. For STEALTH liposomal formulations of anticancer agents to achieve antitumor effects, the active drug must be released into the tumor extracellular fluid (ECF). EXPERIMENTAL DESIGN: S-CKD602 at 1 mg/kg or nonliposomal CKD-602 at 30 mg/kg was administered once via tail vein to mice bearing A375 human melanoma xenografts. Mice (n = 3 per time point) were euthanized at 0.083 to 24 h, 48 h, and 72 h after S-CKD02 and from 0.083 to 24 h after nonliposomal CKD-602. Plasma samples were processed to measure encapsulated, released, and sum total (encapsulated plus released) CKD-602, and tumor and tissue samples were processed to measure sum total CKD-602. Microdialysis samples of tumor ECF were obtained from 0 to 2 h, 4 to 7 h, and 20 to 24 h after nonliposomal CKD-602 and from 0 to 2 h, 24 to 27 h, 48 to 51 h, and 72 to 75 h after S-CKD602. A liquid chromatography-mass spectrometry assay was used to measure the total (sum of lactone and hydroxyl acid) CKD-602. The area under the concentration-versus-time curves (AUC) from 0 to infinity and time >1 ng/mL in tumor were estimated. RESULTS: For S-CKD602, the CKD-602 sum total AUC in plasma and tumor and the CKD-602 AUC in tumor ECF were 201,929, 13,194, and 187 ng/mL h, respectively. For S-CKD602, 82% of CKD-602 remains encapsulated in plasma. For nonliposomal CKD-602, the CKD-602 AUC in plasma and tumor and the CKD-602 AUC in tumor ECF were 9,117, 11,661, and 639 ng/mL.h, respectively. The duration of time the CKD-602 concentration was >1 ng/mL in tumor ECF after S-CKD602 and nonliposomal CKD-602 was >72 and approximately 20 h, respectively. For S-CKD602, the CKD-602 sum total exposure was 1.3-fold higher in fat as compared with muscle. The ratio of CKD-602 sum total exposure in fat to muscle was 3.8-fold higher after administration of S-CKD602 compared with nonliposomal CKD-602. CONCLUSION: S-CKD602 provides pharmacokinetic advantages in plasma, tumor, and tumor ECF compared with nonliposomal CKD-602 at 1/30th of the dose, which is consistent with the improved antitumor efficacy of S-CKD602 in preclinical studies. The distribution of S-CKD602 is greater in fat compared with muscle whereas the distribution of nonliposomal CKD-602 is greater in muscle compared with fat. These results suggest that the body composition of a patient may affect the disposition of S-CKD602 and released CKD-602.


Assuntos
Camptotecina/análogos & derivados , Lipossomos/farmacocinética , Melanoma/metabolismo , Polietilenoglicóis/farmacocinética , Animais , Camptotecina/administração & dosagem , Camptotecina/sangue , Camptotecina/farmacocinética , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Líquido Extracelular/metabolismo , Feminino , Humanos , Lipossomos/administração & dosagem , Melanoma/sangue , Melanoma/tratamento farmacológico , Camundongos , Camundongos SCID , Microdiálise/métodos , Polietilenoglicóis/administração & dosagem , Distribuição Tecidual , Transplante Heterólogo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Cancer Chemother Pharmacol ; 53(4): 329-36, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14673619

RESUMO

PURPOSE: SPI-077 and SPI-077 B103 are formulations of cisplatin encapsulated in pegylated STEALTH liposomes that accumulate in tumors. However, the extent to which active platinum (Pt) is released from the liposome is unknown. Thus, we evaluated the disposition of encapsulated and released Pt in plasma and tumors after administration of STEALTH liposomal and nonliposomal cisplatin. METHODS: Cisplatin (10 mg/kg), SPI-077 (10 mg/kg), and SPI-077 B103 (5 mg/kg) were administered i.v. to mice bearing B16 murine melanoma tumors. Microdialysis probes were placed into the right and left sides of each tumor, and serial samples were collected from tumor extracellular fluid (ECF) after administration of each agent. After each microdialysis procedure, tumor samples were obtained at each probe site to measure total Pt and Pt-DNA adducts. In a separate study, serial plasma samples (three mice per time point) were obtained. Unbound Pt in tumor ECF and plasma, and total Pt in tumor homogenates were measured by flameless atomic absorption spectrophotometry. Area under the tumor ECF (AUC(ECF)) concentration versus time curves of unbound Pt were calculated. Intrastrand GG (Pt-GG) and AG (Pt-AG) Pt-DNA adducts were measured via (32)P-postlabeling. RESULTS: Mean+/-SD peak concentrations of total Pt in tumor homogenates after administration of cisplatin, SPI-077, and SPI-077 B-103 were 3.2+/-1.9, 11.9+/-3.0, and 3.5+/-0.3 microg/g, respectively. After cisplatin, mean+/-SD AUC(ECF) of unbound Pt was 0.72+/-0.46 microg/ml.h. There was no detectable unbound Pt in tumor ECF after SPI-077 or SPI-077 B-103 treatment. Mean+/-SD peak concentration of Pt-GG DNA adducts after administration of cisplatin, SPI-077, and SPI-077 B-103 were 13.1+/-3.3, 3.5+/-1.3, and 2.1+/-0.3 fmol Pt/microg DNA, respectively. CONCLUSION: This study suggests that more SPI-077 and SPI-077 B103 distribute into tumors, but release less Pt into tumor ECF, and form fewer Pt-DNA adducts than does cisplatin.


Assuntos
Antineoplásicos/farmacocinética , Cisplatino/metabolismo , Cisplatino/farmacocinética , Adutos de DNA/metabolismo , DNA de Neoplasias/metabolismo , Melanoma Experimental/metabolismo , Animais , Antineoplásicos/administração & dosagem , Área Sob a Curva , Cisplatino/administração & dosagem , Feminino , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Microdiálise , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA