Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336840

RESUMO

Schizophrenia is a prototypical network disorder with widespread brain-morphological alterations, yet it remains unclear whether these distributed alterations robustly reflect the underlying network layout. We tested whether large-scale structural alterations in schizophrenia relate to normative structural and functional connectome architecture, and systematically evaluated robustness and generalizability of these network-level alterations. Leveraging anatomical MRI scans from 2439 adults with schizophrenia and 2867 healthy controls from 26 ENIGMA sites and normative data from the Human Connectome Project (n = 207), we evaluated structural alterations of schizophrenia against two network susceptibility models: (i) hub vulnerability, which examines associations between regional network centrality and magnitude of disease-related alterations; (ii) epicenter mapping, which identifies regions whose typical connectivity profile most closely resembles the disease-related morphological alterations. To assess generalizability and specificity, we contextualized the influence of site, disease stages, and individual clinical factors and compared network associations of schizophrenia with that found in affective disorders. Our findings show schizophrenia-related cortical thinning is spatially associated with functional and structural hubs, suggesting that highly interconnected regions are more vulnerable to morphological alterations. Predominantly temporo-paralimbic and frontal regions emerged as epicenters with connectivity profiles linked to schizophrenia's alteration patterns. Findings were robust across sites, disease stages, and related to individual symptoms. Moreover, transdiagnostic comparisons revealed overlapping epicenters in schizophrenia and bipolar, but not major depressive disorder, suggestive of a pathophysiological continuity within the schizophrenia-bipolar-spectrum. In sum, cortical alterations over the course of schizophrenia robustly follow brain network architecture, emphasizing marked hub susceptibility and temporo-frontal epicenters at both the level of the group and the individual. Subtle variations of epicenters across disease stages suggest interacting pathological processes, while associations with patient-specific symptoms support additional inter-individual variability of hub vulnerability and epicenters in schizophrenia. Our work outlines potential pathways to better understand macroscale structural alterations, and inter- individual variability in schizophrenia.

2.
BMC Cancer ; 23(1): 185, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823554

RESUMO

BACKGROUND: Glioblastoma, the most common primary malignant brain tumour in adults, is a highly vascular tumour characterised by abnormal angiogenesis. Additional mechanisms of tumour vascularisation have also been reported in glioblastoma, including the formation of tumour cell-derived vessels by vasculogenic mimicry (VM) or the transdifferentiation of tumour cells to endothelial cells. VM and endothelial transdifferentiation have frequently been reported as distinct processes, however, the use of both terms to describe a single process of vascularisation also occurs. Some overlapping characteristics have also been reported when identifying each process. We therefore aimed to determine the markers consistently attributed to VM and endothelial transdifferentiation in the glioblastoma literature. METHODS: Ovid MEDLINE and Ovid Embase were searched for studies published between January 1999 and July 2021 that assessed VM or tumour to endothelial transdifferentiation in human glioblastoma. The online systematic review tool Covidence was used for screening and data extraction. Extracted data included type of tumour-derived vasculature reported, methods and techniques used, and markers investigated. Studies were grouped based on type of vasculature reported for further assessment. RESULTS: One hundred and thirteen of the 419 unique records identified were included for analysis. VM was reported in 64/113 studies, while tumour to endothelial transdifferentiation was reported in 16/113 studies. The remaining studies used both terms to describe a single process, did not define the process that occurred, or concluded that neither VM nor endothelial transdifferentiation occurred. Absence of CD34 and/or CD31 in vascular structures was the most common indicator of VM, while expression of CD34 and/or CD31, in addition to various other endothelial, stem cell or tumour cell markers, indicated tumour to endothelial transdifferentiation. CONCLUSION: Cells derived from tumour to endothelial transdifferentiation express typical endothelial markers including CD34 and CD31, while tumour cells contributing to VM lack CD34 and CD31 expression. Additional tumour markers are required to identify transdifferentiation in glioblastoma tissue, and this process requires further characterisation.


Assuntos
Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Células Endoteliais/metabolismo , Transdiferenciação Celular , Neovascularização Patológica/metabolismo , Diferenciação Celular , Biomarcadores Tumorais
3.
Int J Mol Sci ; 24(22)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38003399

RESUMO

The aim of this prospective clinical study was to evaluate the potential of the prostate specific membrane antigen (PSMA) targeting ligand, [68Ga]-PSMA-Glu-NH-CO-NH-Lys-2-naphthyl-L-Ala-cyclohexane-DOTA ([68Ga]Ga-PSMA-617) as a positron emission tomography (PET) imaging biomarker in recurrent glioblastoma patients. Patients underwent [68Ga]Ga-PSMA-617 and O-(2-[18F]-fluoroethyl)-L-tyrosine ([18F]FET) PET scans on two separate days. [68Ga]Ga-PSMA-617 tumour selectivity was assessed by comparing tumour volume delineation and by assessing the intra-patient correlation between tumour uptake on [68Ga]Ga-PSMA-617 and [18F]FET PET images. [68Ga]Ga-PSMA-617 tumour specificity was evaluated by comparing its tumour-to-brain ratio (TBR) with [18F]FET TBR and its tumour volume with the magnetic resonance imaging (MRI) contrast-enhancing (CE) tumour volume. Ten patients were recruited in this study. [68Ga]Ga-PSMA-617-avid tumour volume was larger than the [18F]FET tumour volume (p = 0.063). There was a positive intra-patient correlation (median Pearson r = 0.51; p < 0.0001) between [68Ga]Ga-PSMA-617 and [18F]FET in the tumour volume. [68Ga]Ga-PSMA-617 had significantly higher TBR (p = 0.002) than [18F]FET. The [68Ga]Ga-PSMA-617-avid tumour volume was larger than the CE tumour volume (p = 0.0039). Overall, accumulation of [68Ga]-Ga-PSMA-617 beyond [18F]FET-avid tumour regions suggests the presence of neoangiogenesis in tumour regions that are not overly metabolically active yet. Higher tumour specificity suggests that [68Ga]-Ga-PSMA-617 could be a better imaging biomarker for recurrent tumour delineation and secondary treatment planning than [18F]FET and CE MRI.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias da Próstata , Masculino , Humanos , Adulto , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Radioisótopos de Gálio , Estudos Prospectivos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Tomografia por Emissão de Pósitrons/métodos , Meios de Contraste , Imageamento por Ressonância Magnética , Doença Crônica , Neoplasias da Próstata/patologia
4.
Aust N Z J Psychiatry ; 54(9): 902-908, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31735061

RESUMO

OBJECTIVES: Large-scale genetic analysis of common variation in schizophrenia has been a powerful approach to understanding this complex but highly heritable psychotic disorder. To further investigate loci, genes and pathways associated more specifically in the well-characterized Australian Schizophrenia Research Bank cohort, we applied genome-wide single-nucleotide polymorphism analysis in these three annotation categories. METHODS: We performed a case-control genome-wide association study in 429 schizophrenia samples and 255 controls. Post-genome-wide association study analyses were then integrated with genomic annotations to explore the enrichment of variation at the gene and pathway level. We also examine candidate single-nucleotide polymorphisms with potential function within expression quantitative trait loci and investigate overall enrichment of variation within tissue-specific functional regulatory domains of the genome. RESULTS: The strongest finding (p = 2.01 × 10-6, odds ratio = 1.82, 95% confidence interval = [1.42, 2.33]) in genome-wide association study was with rs10252923 at 7q21.13, downstream of FZD1 (frizzled class receptor 1). While this did not stand alone after correction, the involvement of FZD1 was supported by gene-based analysis, which exceeded the threshold for genome-wide significance (p = 2.78 × 10-6). CONCLUSION: The identification of FZD1, as an independent association signal at the gene level, supports the hypothesis that the Wnt signalling pathway is altered in the pathogenesis of schizophrenia and may be an important target for therapeutic development.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Austrália , Estudos de Coortes , Receptores Frizzled/genética , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética
5.
Brain Behav Immun ; 53: 194-206, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26697997

RESUMO

Cognitive deficits are a core feature of schizophrenia and contribute significantly to functional disability. We investigated the molecular pathways associated with schizophrenia (SZ; n=47) cases representing both 'cognitive deficit' (CD; n=22) and 'cognitively spared' (CS; n=25) subtypes of schizophrenia (based on latent class analysis of 9 cognitive performance indicators), compared with 49 healthy controls displaying 'normal' cognition. This was accomplished using gene-set analysis of transcriptome data derived from peripheral blood mononuclear cells (PBMCs). We detected 27 significantly altered pathways (19 pathways up-regulated and 8 down-regulated) in the combined SZ group and a further 6 pathways up-regulated in the CS group and 5 altered pathways (4 down-regulated and 1 up-regulated) in the CD group. The transcriptome profiling in SZ and cognitive subtypes were characterized by the up-regulated pathways involved in immune dysfunction (e.g., antigen presentation in SZ), energy metabolism (e.g., oxidative phosphorylation), and down-regulation of the pathways involved in neuronal signaling (e.g., WNT in SZ/CD and ERBB in SZ). When we looked for pathways that differentiated the two cognitive subtypes we found that the WNT signaling was significantly down-regulated (FDR<0.05) in the CD group in accordance with the combined SZ cohort, whereas it was unaffected in the CS group. This suggested suppression of WNT signaling was a defining feature of cognitive decline in schizophrenia. The WNT pathway plays a role in both the development/function of the central nervous system and peripheral tissues, therefore its alteration in PBMCs may be indicative of an important genomic axis relevant to cognition in the neuropathology of schizophrenia.


Assuntos
Disfunção Cognitiva/sangue , Disfunção Cognitiva/genética , Leucócitos Mononucleares/imunologia , Esquizofrenia/sangue , Esquizofrenia/genética , Adulto , Estudos de Casos e Controles , Cognição/fisiologia , Disfunção Cognitiva/imunologia , Disfunção Cognitiva/patologia , Regulação para Baixo , Feminino , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Masculino , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Testes Neuropsicológicos , Esquizofrenia/imunologia , Esquizofrenia/patologia , Transdução de Sinais , Regulação para Cima , Via de Sinalização Wnt/genética
6.
Int J Neuropsychopharmacol ; 17(6): 929-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24480591

RESUMO

Antipsychotic drugs (APDs) can have a profound effect on the human body that extends well beyond our understanding of their neuropsychopharmacology. Some of these effects manifest themselves in peripheral blood lymphocytes, and in some cases, particularly in clozapine treatment, result in serious complications. To better understand the molecular biology of APD action in lymphocytes, we investigated the influence of chlorpromazine, haloperidol and clozapine in vitro, by microarray-based gene and microRNA (miRNA) expression analysis. JM-Jurkat T-lymphocytes were cultured in the presence of the APDs or vehicle alone over 2 wk to model the early effects of APDs on expression. Interestingly both haloperidol and clozapine appear to regulate the expression of a large number of genes. Functional analysis of APD-associated differential expression revealed changes in genes related to oxidative stress, metabolic disease and surprisingly also implicated pathways and biological processes associated with neurological disease consistent with current understanding of the activity of APDs. We also identified miRNA-mRNA interaction associated with metabolic pathways and cell death/survival, all which could have relevance to known side effects of APDs. These results indicate that APDs have a significant effect on expression in peripheral tissue that relate to both known mechanisms as well as poorly characterized side effects.


Assuntos
Antipsicóticos/farmacologia , Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Técnicas de Cultura de Células , Clorpromazina/farmacologia , Clozapina/farmacologia , Haloperidol/farmacologia , Humanos , Células Jurkat , Análise em Microsséries , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
7.
Cells ; 13(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38607073

RESUMO

Glioblastoma is a highly aggressive disease with poor survival outcomes. An emerging body of literature links the role of the renin-angiotensin system (RAS), well-known for its function in the cardiovascular system, to the progression of cancers. We studied the expression of RAS-related genes (ATP6AP2, AGTR1, AGTR2, ACE, AGT, and REN) in The Cancer Genome Atlas (TCGA) glioblastoma cohort, their relationship to patient survival, and association with tumour microenvironment pathways. The expression of RAS genes was then examined in 12 patient-derived glioblastoma cell lines treated with chemoradiation. In cases of glioblastoma within the TCGA, ATP6AP2, AGTR1, ACE, and AGT had consistent expressions across samples, while AGTR2 and REN were lowly expressed. High expression of AGTR1 was independently associated with lower progression-free survival (PFS) (p = 0.01) and had a non-significant trend for overall survival (OS) after multivariate analysis (p = 0.095). The combined expression of RAS receptors (ATP6AP2, AGTR1, and AGTR2) was positively associated with gene pathways involved in hypoxia, microvasculature, stem cell plasticity, and the molecular characterisation of glioblastoma subtypes. In patient-derived glioblastoma cell lines, ATP6AP2 and AGTR1 were upregulated after chemoradiotherapy and correlated with an increase in HIF1A expression. This data suggests the RAS is correlated with changes in the tumour microenvironment and associated with glioblastoma survival outcomes.


Assuntos
Glioblastoma , Sistema Renina-Angiotensina , Humanos , Sistema Renina-Angiotensina/genética , Regulação para Cima/genética , Glioblastoma/genética , Microambiente Tumoral , Receptores de Superfície Celular/metabolismo , Receptor de Pró-Renina
8.
Oncotarget ; 15: 1-18, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227740

RESUMO

Glioblastoma cells can restrict the DNA-damaging effects of temozolomide (TMZ) and radiation therapy (RT) using the DNA damage response (DDR) mechanism which activates cell cycle arrest and DNA repair pathways. Ataxia-telangiectasia and Rad3-Related protein (ATR) plays a pivotal role in the recognition of DNA damage induced by chemotherapy and radiation causing downstream DDR activation. Here, we investigated the activity of gartisertib, a potent ATR inhibitor, alone and in combination with TMZ and/or RT in 12 patient-derived glioblastoma cell lines. We showed that gartisertib alone potently reduced the cell viability of glioblastoma cell lines, where sensitivity was associated with the frequency of DDR mutations and higher expression of the G2 cell cycle pathway. ATR inhibition significantly enhanced cell death in combination with TMZ and RT and was shown to have higher synergy than TMZ+RT treatment. MGMT promoter unmethylated and TMZ+RT resistant glioblastoma cells were also more sensitive to gartisertib. Analysis of gene expression from gartisertib treated glioblastoma cells identified the upregulation of innate immune-related pathways. Overall, this study identifies ATR inhibition as a strategy to enhance the DNA-damaging ability of glioblastoma standard treatment, while providing preliminary evidence that ATR inhibition induces an innate immune gene signature that warrants further investigation.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Proteínas Supressoras de Tumor/metabolismo , Morte Celular , Linhagem Celular , DNA , Linhagem Celular Tumoral , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
9.
Int J Neuropsychopharmacol ; 16(7): 1483-503, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23442539

RESUMO

Distinct gene expression profiles can be detected in peripheral blood mononuclear cells (PBMCs) in patients with schizophrenia; however, little is known about the effects of antipsychotic medication. This study compared gene expression profiles in PMBCs from treatment-naive patients with schizophrenia before and after antipsychotic drug treatment. PBMCs were obtained from 10 treatment-naive schizophrenia patients before and 6 wk after initiating antipsychotic drug treatment and compared to PMBCs collected from 11 healthy community volunteers. Genome-wide expression profiling was conducted using Illumina HumanHT-12 expression bead arrays and analysed using significance analysis of microarrays. This analysis identified 624 genes with altered expression (208 up-regulated, 416 down-regulated) prior to antipsychotic treatment (p < 0.05) including schizophrenia-associated genes AKT1, DISC1 and DGCR6. After 6-8 wk treatment of patients with risperidone or risperidone in combination with haloperidol, only 106 genes were altered, suggesting that the treatment corrected the expression of a large proportion of genes back to control levels. However, 67 genes continued to show the same directional change in expression after treatment. Ingenuity® pathway analysis and gene set enrichment analysis implicated dysregulation of biological functions and pathways related to inflammation and immunity in patients with schizophrenia. A number of the top canonical pathways dysregulated in treatment-naive patients signal through AKT1 that was up-regulated. After treatment, AKT1 returned to control levels and less dysregulation of these canonical pathways was observed. This study supports immune dysfunction and pathways involving AKT1 in the aetiopathophysiology of schizophrenia and their response to antipsychotic medication.


Assuntos
Antipsicóticos/uso terapêutico , Leucócitos Mononucleares/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esquizofrenia/tratamento farmacológico , Transcriptoma/efeitos dos fármacos , Adulto , Idoso , Antipsicóticos/farmacologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/fisiologia , Humanos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Proto-Oncogênicas c-akt/genética , Escalas de Graduação Psiquiátrica , Esquizofrenia/complicações , Transcriptoma/fisiologia , Adulto Jovem
10.
Anal Biochem ; 437(2): 164-71, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23481915

RESUMO

MicroRNAs (miRNAs) are small noncoding RNA molecules that act as sequence specificity guides to direct post-transcriptional gene silencing. In doing so, miRNAs regulate many critical developmental processes, including cellular proliferation, differentiation, migration, and apoptosis, as well as more specialized biological functions such as dendritic spine development and synaptogenesis. Interactions between miRNAs and their miRNA recognition elements occur via partial complementarity, rendering tremendous redundancy in targeting such that miRNAs are predicted to regulate 60% of the genome, with each miRNA estimated to regulate more than 200 genes. Because these predictions are prone to false positives and false negatives, there is an ever present need to provide material support to these assertions to firmly establish the biological function of specific miRNAs in both normal and pathophysiological contexts. Using schizophrenia-associated miR-181b as an example, we present detailed guidelines and novel insights for the rapid establishment of a streamlined miRNA-reporter gene assay and explore various design concepts for miRNA-reporter gene applications, including bidirectional miRNA modulation. In exemplifying this approach, we report seven novel miR-181b target sites for five schizophrenia candidate genes (DISC1, BDNF, ENKUR, GRIA1, and GRIK1) and dissect a number of vital concepts regarding future developments for miRNA-reporter gene assays and the interpretation of their results.


Assuntos
Regulação da Expressão Gênica/fisiologia , Genes Reporter/fisiologia , MicroRNAs/metabolismo , Reações Falso-Negativas , Reações Falso-Positivas , Células HEK293 , Humanos , MicroRNAs/genética
11.
Cancers (Basel) ; 15(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37568738

RESUMO

Vasculogenic mimicry (VM), the ability of tumour cells to form functional microvasculature without an endothelial lining, may contribute to anti-angiogenic treatment resistance in glioblastoma. We aimed to assess the extent of VM formation in primary and recurrent glioblastomas and to determine whether VM vessels also express prostate-specific membrane antigen (PSMA), a pathological vessel marker. Formalin-fixed paraffin-embedded tissue from 35 matched pairs of primary and recurrent glioblastoma was immunohistochemically labelled for PSMA and CD34 and stained with periodic acid-Schiff (PAS). Vascular structures were categorised as endothelial vessels (CD34+/PAS+) or VM (CD34-/PAS+). Most blood vessels in both primary and recurrent tumours were endothelial vessels, and these significantly decreased in recurrent tumours (p < 0.001). PSMA was expressed by endothelial vessels, and its expression was also decreased in recurrent tumours (p = 0.027). VM was observed in 42.86% of primary tumours and 28.57% of recurrent tumours. VM accounted for only a small proportion of the tumour vasculature and VM density did not differ between primary and recurrent tumours (p = 0.266). The functional contribution of VM and its potential as a treatment target in glioblastoma require further investigation.

12.
BMC Genomics ; 13: 561, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-23083446

RESUMO

BACKGROUND: MicroRNA (miRNA) are small non-coding RNA molecules which function as nucleic acid-based specificity factors in the universal RNA binding complex known as the RNA induced silencing complex (RISC). In the canonical gene-silencing pathway, these activated RISC particles are associated with RNA decay and gene suppression, however, there is evidence to suggest that in some circumstances they may also stabilise their target RNA and even enhance translation. To further explore the role of miRNA in this context, we performed a genome-wide expression analysis to investigate the molecular consequences of bidirectional modulation of the disease-associated miRNAs miR-181b and miR-107 in multiple human cell lines. RESULTS: This data was subjected to pathways analysis and correlated against miRNA targets predicted through seed region homology. This revealed a large number of both conserved and non-conserved miRNA target genes, a selection of which were functionally validated through reporter gene assays. Contrary to expectation we also identified a significant proportion of predicted target genes with both conserved and non-conserved recognition elements that were positively correlated with the modulated miRNA. Finally, a large proportion of miR-181b associated genes devoid of the corresponding miRNA recognition element, were enriched with binding motifs for the E2F1 transcription factor, which is encoded by a miR-181b target gene. CONCLUSIONS: These findings suggest that miRNA regulate target genes directly through interactions with both conserved and non-conserved target recognition elements, and can lead to both a decrease and increase in transcript abundance. They also multiply their influence through interaction with transcription factor genes exemplified by the observed miR-181b/E2F1 relationship.


Assuntos
MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Linhagem da Célula/genética , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Perfilação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , MicroRNAs/genética , Estabilidade de RNA , RNA Mensageiro/genética
13.
Aust N Z J Psychiatry ; 46(7): 598-610, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22441207

RESUMO

BACKGROUND: With an estimated 80% heritability, molecular genetic research into schizophrenia has remained inconclusive. Recent large-scale, genome-wide association studies only identified a small number of susceptibility genes with individually very small effect sizes. However, the variable expression of the phenotype is not well captured in diagnosis-based research as well as when assuming a 'heterogenic risk model' (as apposed to a monogenic or polygenic model). Hence, the expression of susceptibility genes in response to environmental factors in concert with other disease-promoting or protecting genes has increasingly attracted attention. METHOD: The current review summarises findings of microarray gene expression research with relevance to schizophrenia as they emerged over the past decade. RESULTS: Most findings from post mortem, peripheral tissues and animal models to date have linked altered gene expression in schizophrenia to presynaptic function, signalling, myelination, neural migration, cellular immune mechanisms, and response to oxidative stress consistent with multiple small effects of many individual genes. However, the majority of results are difficult to interpret due to small sample sizes (i.e. potential type-2 errors), confounding factors (i.e. medication effects) or lack of plausible neurobiological theory. CONCLUSION: Nevertheless, microarray gene expression research is likely to play an important role in the future when investigating gene/gene and gene/environment interactions by adopting a neurobiologically sound theoretical framework.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Esquizofrenia/genética , Predisposição Genética para Doença , Humanos
14.
Cells ; 11(7)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35406779

RESUMO

Glioblastoma is a highly aggressive, invasive and treatment-resistant tumour. The DNA damage response (DDR) provides tumour cells with enhanced ability to activate cell cycle arrest and repair treatment-induced DNA damage. We studied the expression of DDR, its relationship with standard treatment response and patient survival, and its activation after treatment. The transcriptomic profile of DDR pathways was characterised within a cohort of isocitrate dehydrogenase (IDH) wild-type glioblastoma from The Cancer Genome Atlas (TCGA) and 12 patient-derived glioblastoma cell lines. The relationship between DDR expression and patient survival and cell line response to temozolomide (TMZ) or radiation therapy (RT) was assessed. Finally, the expression of 84 DDR genes was examined in glioblastoma cells treated with TMZ and/or RT. Although distinct DDR cluster groups were apparent in the TCGA cohort and cell lines, no significant differences in OS and treatment response were observed. At the gene level, the high expression of ATP23, RAD51C and RPA3 independently associated with poor prognosis in glioblastoma patients. Finally, we observed a substantial upregulation of DDR genes after treatment with TMZ and/or RT, particularly in RT-treated glioblastoma cells, peaking within 24 h after treatment. Our results confirm the potential influence of DDR genes in patient outcome. The observation of DDR genes in response to TMZ and RT gives insight into the global response of DDR pathways after adjuvant treatment in glioblastoma, which may have utility in determining DDR targets for inhibition.


Assuntos
Glioblastoma , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Dano ao DNA/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/radioterapia , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Transcriptoma/genética
15.
JAMA Psychiatry ; 79(3): 260-269, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35019943

RESUMO

IMPORTANCE: About 20% to 30% of people with schizophrenia have psychotic symptoms that do not respond adequately to first-line antipsychotic treatment. This clinical presentation, chronic and highly disabling, is known as treatment-resistant schizophrenia (TRS). The causes of treatment resistance and their relationships with causes underlying schizophrenia are largely unknown. Adequately powered genetic studies of TRS are scarce because of the difficulty in collecting data from well-characterized TRS cohorts. OBJECTIVE: To examine the genetic architecture of TRS through the reassessment of genetic data from schizophrenia studies and its validation in carefully ascertained clinical samples. DESIGN, SETTING, AND PARTICIPANTS: Two case-control genome-wide association studies (GWASs) of schizophrenia were performed in which the case samples were defined as individuals with TRS (n = 10 501) and individuals with non-TRS (n = 20 325). The differences in effect sizes for allelic associations were then determined between both studies, the reasoning being such differences reflect treatment resistance instead of schizophrenia. Genotype data were retrieved from the CLOZUK and Psychiatric Genomics Consortium (PGC) schizophrenia studies. The output was validated using polygenic risk score (PRS) profiling of 2 independent schizophrenia cohorts with TRS and non-TRS: a prevalence sample with 817 individuals (Cardiff Cognition in Schizophrenia [CardiffCOGS]) and an incidence sample with 563 individuals (Genetics Workstream of the Schizophrenia Treatment Resistance and Therapeutic Advances [STRATA-G]). MAIN OUTCOMES AND MEASURES: GWAS of treatment resistance in schizophrenia. The results of the GWAS were compared with complex polygenic traits through a genetic correlation approach and were used for PRS analysis on the independent validation cohorts using the same TRS definition. RESULTS: The study included a total of 85 490 participants (48 635 [56.9%] male) in its GWAS stage and 1380 participants (859 [62.2%] male) in its PRS validation stage. Treatment resistance in schizophrenia emerged as a polygenic trait with detectable heritability (1% to 4%), and several traits related to intelligence and cognition were found to be genetically correlated with it (genetic correlation, 0.41-0.69). PRS analysis in the CardiffCOGS prevalence sample showed a positive association between TRS and a history of taking clozapine (r2 = 2.03%; P = .001), which was replicated in the STRATA-G incidence sample (r2 = 1.09%; P = .04). CONCLUSIONS AND RELEVANCE: In this GWAS, common genetic variants were differentially associated with TRS, and these associations may have been obscured through the amalgamation of large GWAS samples in previous studies of broadly defined schizophrenia. Findings of this study suggest the validity of meta-analytic approaches for studies on patient outcomes, including treatment resistance.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Herança Multifatorial/genética , Transtornos Psicóticos/tratamento farmacológico , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
16.
Biol Psychiatry ; 91(1): 102-117, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34099189

RESUMO

BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.


Assuntos
Transtorno Bipolar/genética , Transtorno Depressivo Maior , Transtornos Psicóticos , Esquizofrenia/genética , Caracteres Sexuais , Transtorno Depressivo Maior/genética , Células Endoteliais , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Transtornos Psicóticos/genética , Receptores de Fatores de Crescimento do Endotélio Vascular , Sulfurtransferases
17.
Cell Oncol (Dordr) ; 44(5): 961-981, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34057732

RESUMO

BACKGROUND: The aggressive, invasive and treatment resistant nature of glioblastoma makes it one of the most lethal cancers in humans. Total surgical resection is difficult, and a combination of radiation and chemotherapy is used to treat the remaining invasive cells beyond the tumour border by inducing DNA damage and activating cell death pathways in glioblastoma cells. Unfortunately, recurrence is common and a major hurdle in treatment, often met with a more aggressive and treatment resistant tumour. A mechanism of resistance is the response of DNA repair pathways upon treatment-induced DNA damage, which enact cell-cycle arrest and repair of DNA damage that would otherwise cause cell death in tumour cells. CONCLUSIONS: In this review, we discuss the significance of DNA repair mechanisms in tumour formation, aggression and treatment resistance. We identify an underlying trend in the literature, wherein alterations in DNA repair pathways facilitate glioma progression, while established high-grade gliomas benefit from constitutively active DNA repair pathways in the repair of treatment-induced DNA damage. We also consider the clinical feasibility of inhibiting DNA repair in glioblastoma and current strategies of using DNA repair inhibitors as agents in combination with chemotherapy, radiation or immunotherapy. Finally, the importance of blood-brain barrier penetrance when designing novel small-molecule inhibitors is discussed.


Assuntos
Neoplasias Encefálicas/genética , Dano ao DNA , Reparo do DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioblastoma/genética , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Reparo do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Humanos , Modelos Genéticos , Temozolomida/uso terapêutico
18.
Oncotarget ; 12(21): 2177-2187, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34676050

RESUMO

Immunotherapies targeting tumour-infiltrating lymphocytes (TILs) that express the immune checkpoint molecule programmed cell death-1 (PD-1) have shown promise in preclinical glioblastoma models but have had limited success in clinical trials. To assess when glioblastoma is most likely to benefit from immune checkpoint inhibitors we determined the density of TILs in primary and recurrent glioblastoma. Thirteen cases of matched primary and recurrent glioblastoma tissue were immunohistochemically labelled for CD3, CD8, CD4 and PD-1, and TIL density assessed. CD3+ TILs were observed in all cases, with the majority of both primary (69.2%) and recurrent (61.5%) tumours having low density of TILs present. CD8+ TILs were observed at higher densities than CD4+ TILs in both tumour groups. PD-1+ TILs were sparse and present in only 25% of primary and 50% of recurrent tumours. Quantitative analysis of TILs demonstrated significantly higher CD8+ TIL density at recurrence (p = 0.040). No difference was observed in CD3+ (p = 0.191), CD4+ (p = 0.607) and PD-1+ (p = 0.070) TIL density between primary and recurrent groups. This study shows that TILs are present at low densities in both primary and recurrent glioblastoma. Furthermore, PD-1+ TILs were frequently absent, which may provide evidence as to why anti-PD-1 immunotherapy trials have been largely unsuccessful in glioblastoma.

19.
Schizophr Bull ; 47(2): 542-551, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33085749

RESUMO

INTRODUCTION: Clarifying the role of neuroinflammation in schizophrenia is subject to its detection in the living brain. Free-water (FW) imaging is an in vivo diffusion-weighted magnetic resonance imaging (dMRI) technique that measures water molecules freely diffusing in the brain and is hypothesized to detect inflammatory processes. Here, we aimed to establish a link between peripheral markers of inflammation and FW in brain white matter. METHODS: All data were obtained from the Australian Schizophrenia Research Bank (ASRB) across 5 Australian states and territories. We first tested for the presence of peripheral cytokine deregulation in schizophrenia, using a large sample (N = 1143) comprising the ASRB. We next determined the extent to which individual variation in 8 circulating pro-/anti-inflammatory cytokines related to FW in brain white matter, imaged in a subset (n = 308) of patients and controls. RESULTS: Patients with schizophrenia showed reduced interleukin-2 (IL-2) (t = -3.56, P = .0004) and IL-12(p70) (t = -2.84, P = .005) and increased IL-6 (t = 3.56, P = .0004), IL-8 (t = 3.8, P = .0002), and TNFα (t = 4.30, P < .0001). Higher proinflammatory signaling of IL-6 (t = 3.4, P = .0007) and TNFα (t = 2.7, P = .0007) was associated with higher FW levels in white matter. The reciprocal increases in serum cytokines and FW were spatially widespread in patients encompassing most major fibers; conversely, in controls, the relationship was confined to the anterior corpus callosum and thalamic radiations. No relationships were observed with alternative dMRI measures, including the fractional anisotropy and tissue-related FA. CONCLUSIONS: We report widespread deregulation of cytokines in schizophrenia and identify inflammation as a putative mechanism underlying increases in brain FW levels.


Assuntos
Água Corporal/diagnóstico por imagem , Citocinas/sangue , Inflamação , Esquizofrenia , Substância Branca , Adulto , Austrália , Estudos Transversais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Feminino , Humanos , Inflamação/sangue , Inflamação/diagnóstico por imagem , Inflamação/imunologia , Masculino , Pessoa de Meia-Idade , Esquizofrenia/sangue , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/imunologia , Esquizofrenia/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
20.
Hum Mol Genet ; 17(8): 1156-68, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18184693

RESUMO

Analysis of global microRNA (miRNA) expression in postmortem cortical grey matter from the superior temporal gyrus, revealed significant up-regulation of miR-181b expression in schizophrenia. This finding was supported by quantitative real-time RT-PCR analysis of miRNA expression in a cohort of 21 matched pairs of schizophrenia and non-psychiatric controls. The implications of this finding are substantial, as this miRNA is predicted to regulate many target genes with potential significance to the development of schizophrenia. They include the calcium sensor gene visinin-like 1 (VSNL1) and the ionotropic AMPA glutamate receptor subunit (GRIA2), which were found to be down-regulated in the same cortical tissue from the schizophrenia group. Both of these genes were also suppressed in miR-181b transfected cells and shown to contain functional miR-181b miRNA recognition elements by reporter gene assay. This study suggests altered miRNA levels could be a significant factor in the dysregulation of cortical gene expression in schizophrenia.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/genética , Esquizofrenia/genética , Adulto , Idoso , Estudos de Casos e Controles , Linhagem Celular , Córtex Cerebral/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neurocalcina/metabolismo , Receptores de AMPA/metabolismo , Esquizofrenia/metabolismo , Lobo Temporal/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA