Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672954

RESUMO

Characterization of dynamics inside clouds remains a challenging task for weather forecasting and climate modeling as cloud properties depend on interdependent natural processes at micro- and macro-scales. Turbulence plays an important role in particle dynamics inside clouds; however, turbulence mechanisms are not yet fully understood partly due to the difficulty of measuring clouds at the smallest scales. To address these knowledge gaps, an experimental method for measuring the influence of small-scale turbulence in cloud formation in situ and producing an in-field cloud Lagrangian dataset is being developed by means of innovative ultralight radioprobes. This paper presents the electronic system design along with the obtained results from laboratory and field experiments regarding these compact (diameter ≈30 cm), lightweight (≈20 g), and expendable devices designed to passively float and track small-scale turbulence fluctuations inside warm clouds. The fully customized mini-radioprobe board (5 cm × 5 cm) embeds sensors to measure local fluctuations and transmit data to the ground in near real time. The tests confirm that the newly developed probes perform well, providing accurate information about atmospheric turbulence as referenced in space. The integration of multiple radioprobes allows for a systematic and accurate monitoring of atmospheric turbulence and its impact on cloud formation.

2.
Phys Rev Lett ; 107(19): 194501, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22181611

RESUMO

The generation of small-scale anisotropy in turbulent shearless mixing is numerically investigated. Data from direct numerical simulations at Taylor Reynolds' numbers between 45 and 150 show not only that there is a significant departure of the longitudinal velocity derivative moments from the values found in homogeneous and isotropic turbulence but that the variation of skewness has an opposite sign for the components across the mixing layer and parallel to it. The anisotropy induced by the presence of a kinetic energy gradient has a very different pattern from the one generated by an homogeneous shear. The transversal derivative moments in the mixing are in fact found to be very small, which highlights that smallness of the transversal moments is not a sufficient condition for isotropy.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(1 Pt 2): 016309, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18351936

RESUMO

The interaction of two isotropic turbulent fields of equal integral scale but different kinetic energy generates the simplest kind of inhomogeneous turbulent field. In this paper we present a numerical experiment where two time decaying isotropic fields of kinetic energies E1 and E2 initially match over a narrow region. Within this region the kinetic energy varies as a hyperbolic tangent. The following temporal evolution produces a shearless mixing. The anisotropy and intermittency of velocity and velocity derivative statistics is observed. In particular the asymptotic behavior in time and as a function of the energy ratio E_{1}E_{2}-->infinity is discussed. This limit corresponds to the maximum observable turbulent energy gradient for a given E1 and is obtained through the limit E_{2}-->0 . A field with E_{1}E_{2}-->infinity represents a mixing which could be observed near a surface subject to a very small velocity gradient separating two turbulent fields, one of which is nearly quiescent. In this condition the turbulent penetration is maximum and reaches a value equal to 1.2 times the nominal mixing layer width. The experiment shows that the presence of a turbulent energy gradient is sufficient for the appearance of intermittency and that during the mixing process the pressure transport is not negligible with respect to the turbulent velocity transport. These findings may open the way to the hypothesis that the presence of a gradient of turbulent energy is the minimal requirement for Gaussian departure in turbulence.

4.
Phys Rev E ; 97(6-1): 063102, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011509

RESUMO

This study provides sufficient conditions for the temporal monotonic decay of enstrophy for two-dimensional perturbations traveling in the incompressible, viscous, plane Poiseuille, and Couette flows. Extension of Synge's procedure [J. L. Synge, Proc. Fifth Int. Congress Appl. Mech. 2, 326 (1938); Semicentenn. Publ. Am. Math. Soc. 2, 227 (1938)] to the initial-value problem allow us to find the region of the wave-number-Reynolds-number map where the enstrophy of any initial disturbance cannot grow. This region is wider than that of the kinetic energy. We also show that the parameter space is split into two regions with clearly distinct propagation and dispersion properties.

5.
Phys Rev E ; 93(3): 033116, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078456

RESUMO

In this study we analyze the phase and group velocity of three-dimensional linear traveling waves in two sheared flows: the plane channel and the wake flows. This was carried out by varying the wave number over a large interval of values at a given Reynolds number inside the ranges 20-100, 1000-8000, for the wake and channel flow, respectively. Evidence is given about the possible presence of both dispersive and nondispersive effects which are associated with the long and short ranges of wavelength. We solved the Orr-Sommerfeld and Squire eigenvalue problem and observed the least stable mode. It is evident that, at low wave numbers, the least stable eigenmodes in the left branch of the spectrum behave in a dispersive manner. By contrast, if the wave number is above a specific threshold, a sharp dispersive-to-nondispersive transition can be observed. Beyond this transition, the dominant mode belongs to the right branch of the spectrum. The transient behavior of the phase velocity of small three-dimensional traveling waves was also considered. Having chosen the initial conditions, we then show that the shape of the transient highly depends on the transition wavelength threshold value. We show that the phase velocity can oscillate with a frequency which is equal to the frequency width of the eigenvalue spectrum. Furthermore, evidence of intermediate self-similarity is given for the perturbation field.

6.
Artigo em Inglês | MEDLINE | ID: mdl-23410432

RESUMO

Basic properties of the incompressible fluid motion in a rectangular cavity located along one wall of a plane channel are considered. For Mach numbers of the order of 1×10(-3) and using the incompressible formulation, we look for observable properties that can be associated with acoustic emission, which is normally observed in this kind of flow beyond a critical value of Reynolds number. The focus is put on the energy dynamics, in particular on the accumulation of energy in the cavity which takes place in the form of pressure and kinetic energy. By increasing the external forcing, we observe that the pressure flow into the cavity increases very rapidly, then peaks. However, the flow of kinetic energy, which is many orders of magnitude lower than that of the pressure, slowly but continuously grows. This leads to the pressure-kinetic energy flows ratio reaching an asymptotic state around the value 1000 for the channel bulk speed Reynolds number. It is interesting to note that beyond this threshold when the channel flow is highly unsteady-a sort of coarse turbulent flow-a sequence of high and low pressure spots is seen to depart from the downward cavity step in the statistically averaged field. The set of spots forms a steady spatial structure, a sort of damped standing wave stretching along the spanwise direction. The line joining the centers of the spots has an inclination similar to the normal to the fronts of density or pressure waves, which are observed to propagate from the downstream cavity edge in compressible cavity flows (at Mach numbers of 1×10(2) to 1×10(3), larger than those considered here). The wavelength of the standing wave is of the order of 1/8 the cavity depth and observed at the channel bulk Reynolds number, Re~2900. In this condition, the measure of the maximum pressure differences in the cavity field shows values of the order of 1×10(-1) Pa. We interpret the presence of this sort of wave as the fingerprint of the noise emission spots which could be observed in simulations where the full compressible formulation is used. The flow is studied by means of a sequence of direct numerical simulations in the Reynolds number range 25-2900. This allows the study to span across the steady laminar regime up to a first coarse turbulent regime. These results are confirmed by the good agreement with a set of laboratory results obtained at a Reynolds number one order of magnitude larger in a different cavity geometry [M. Gharib and A. Roshko, J. Fluid Mech. 177, 501 (1987)]. This leaves room for a certain degree of qualitative universality to be associated with the present findings.


Assuntos
Algoritmos , Transferência de Energia , Modelos Teóricos , Reologia/métodos , Simulação por Computador , Cinética , Pressão
7.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036326, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20365873

RESUMO

This work is directed toward investigating the fate of three-dimensional long perturbation waves in a plane incompressible wake. The analysis is posed as an initial-value problem in space. More specifically, input is made at an initial location in the downstream direction and then tracing the resulting behavior further downstream subject to the restriction of finite kinetic energy. This presentation follows the outline given by Criminale and Drazin [W. O. Criminale and P. G. Drazin, Stud. Appl. Math. 83, 123 (1990)] that describes the system in terms of perturbation vorticity and velocity. The analysis is based on large scale waves and expansions using multiscales and multitimes for the partial differential equations. The multiscaling is based on an approach where the small parameter is linked to the perturbation property independently from the flow control parameter. Solutions of the perturbative equations are determined numerically after the introduction of a regular perturbation scheme analytically deduced up to the second order. Numerically, the complete linear system is also integrated. Since the results relevant to the complete problem are in very good agreement with the results of the first-order analysis, the numerical solution at the second order was deemed not necessary. The use for an arbitrary initial-value problem will be shown to contain a wealth of information for the different transient behaviors associated to the symmetry, angle of obliquity, and spatial decay of the long waves. The amplification factor of transversal perturbations never presents the trend--a growth followed by a long damping--usually seen in waves with wave number of order one or less. Asymptotical instability is always observed.

8.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 2): 026303, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20866901

RESUMO

An experimental research concerning highly underexpanded jets made of different gases from the surrounding ambient is here described. By selecting different species of gases, it was possible to vary the jet-to-ambient density ratio in the 0.04-12 range and observe its effect on the jet morphology. By adjusting the stagnation and ambient pressures, it has been possible to select the Mach number of the jets, independently from the density ratio. Each jet is therefore characterized by its maximum Mach number, ranging from 10 to 50. The Reynolds number range of the nozzle is 10(3)-5×10(4). The spatial evolution of the jets was observed over a much larger scale than the nozzle diameter. The gas densities were evaluated from the light emission induced by an electron beam and the gas concentrations were obtained by analyzing the color of the emitted light. The results have shown that the morphology of the jets depends to a greater extent on the density ratio. Jets that are lighter than the ambient exhibit a more intense jet-ambient mixing than jets that are heavier than the ambient, while the effects of changing the jet Mach number do not seem to be too large in the explored range. These results can be expressed by means of two simple scaling laws relevant to the near field (pre-Mach-disk) and the mid-long term field (post-Mach-disk), respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA