RESUMO
Development of the human placenta is critical for a successful pregnancy. The placenta allows the exchange of oxygen and carbon dioxide and is crucial to manage acid-base balance within a narrow pH. It is known that low pH levels are a risk of apoptosis in several tissues. However, there has been little discussion about the effect of acidic stress in the placenta. Leptin is produced by the placenta with a trophic autocrine effect. Previous results of our group have demonstrated that leptin prevents apoptosis of trophoblast cells under different stress conditions such as serum deprivation and hyperthermia. The purpose of the present work is to evaluate acidic stress consequences in trophoblast explant survival and to determine leptin action in these conditions. For this objective, term human trophoblast explants were cultured at physiological pH (pH 7.4) and at acidic pH (pH 6.8) in the presence or absence of leptin. Western blot assays were performed to study the abundance of active caspase-3 and the p89 fragment of PARP-1. Pro-apoptotic and pro-survival members of Bcl-2 family, as Bax, t-Bid, and Bcl-2, were studied. Moreover, p53 pathway was also evaluated including Mdm-2, the main p53 regulator. Active caspase-3 and cleaved PARP-1 abundances were increased at low extracellular pH. Moreover, t-Bid levels were also augmented as well as p53 expression and phosphorylation on S46. Leptin treatment prevents the consequences of acidosis, decreasing p53 expression and increasing Mdm-2 expression. In summary, this work demonstrated for first time that low pH induces apoptosis of human trophoblast explants involving apoptotic intrinsic pathway, and leptin impairs this effect.
Assuntos
Ácidos/toxicidade , Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Leptina/farmacologia , Placenta/citologia , Estresse Fisiológico/efeitos dos fármacos , Adulto , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Feminino , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Gravidez , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Trofoblastos/citologia , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
Leptin is now considered an important signalling molecule of the reproductive system, as it regulates the production of gonadotrophins, the blastocyst formation and implantation, the normal placentation, as well as the foeto-placental communication. Leptin is a peptide hormone secreted mainly by adipose tissue, and the placenta is the second leptin-producing tissue in humans. Placental leptin is an important cytokine which regulates placental functions in an autocrine or paracrine manner. Leptin seems to play a crucial role during the first stages of pregnancy as it modulates critical processes such as proliferation, protein synthesis, invasion and apoptosis in placental cells. Furthermore, deregulation of leptin levels has been correlated with the pathogenesis of various disorders associated with reproduction and gestation, including polycystic ovary syndrome, recurrent miscarriage, gestational diabetes mellitus, pre-eclampsia and intrauterine growth restriction. Due to the relevant incidence of the mentioned diseases and the importance of leptin, we decided to review the latest information available about leptin action in normal and pathological pregnancies to support the idea of leptin as an important factor and/or predictor of diverse disorders associated with reproduction and pregnancy.
Assuntos
Leptina/metabolismo , Complicações na Gravidez/metabolismo , Tecido Adiposo/metabolismo , Feminino , Humanos , Fatores Imunológicos/metabolismo , Placenta/embriologia , Placenta/metabolismo , Gravidez , ReproduçãoRESUMO
Prostate cancer (PCa) poses a significant global health challenge, particularly due to its progression into aggressive forms like neuroendocrine prostate cancer (NEPC). This study developed and validated a stemness-associated gene signature using advanced machine learning techniques, including Random Forest and Lasso regression, applied to large-scale transcriptomic datasets. The resulting 7-gene signature (KMT5C, MEN1, TYMS, IRF5, DNMT3B, CDC25B and DPP4) was validated across independent cohorts and patient-derived xenograft (PDX) models. The signature demonstrated strong prognostic value for progression-free, disease-free, relapse-free, metastasis-free, and overall survival. Importantly, the signature not only identified specific NEPC subtypes, such as large-cell neuroendocrine carcinoma, which is associated with very poor outcomes, but also predicted a poor prognosis for PCa cases that exhibit this molecular signature, even when they were not histopathologically classified as NEPC. This dual prognostic and classifier capability makes the 7-gene signature a robust tool for personalized medicine, providing a valuable resource for predicting disease progression and guiding treatment strategies in PCa management.
RESUMO
AKT/PKB is a kinase crucial for pluripotency maintenance in pluripotent stem cells. Multiple post-translational modifications modulate its activity. We have previously demonstrated that AKT1 induces the expression of the pluripotency transcription factor Nanog in a SUMOylation-dependent manner in mouse embryonic stem cells. Here, we studied different cellular contexts and main candidates that could mediate this induction. Our results strongly suggest the pluripotency transcription factors OCT4 and SOX2 are not essential mediators. Additionally, we concluded that this induction takes place in different pluripotent contexts but not in terminally differentiated cells. Finally, the cross-matching analysis of ESCs, iPSCs and MEFs transcriptomes and AKT1 phosphorylation targets provided new clues about possible factors that could be involved in the SUMOylation-dependent Nanog induction by AKT.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Sumoilação , Animais , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Proteínas de Homeodomínio/genéticaRESUMO
The renal kallikrein-kinin system (RKKS) has been related to blood pressure control and sodium and water balance. We have previously shown that female spontaneously hypertensive rats (SHR) have high urinary kallikrein activity (UKa) and lower blood pressure (BP) than males whereas ovariectomy stimulates UKa and diminishes BP. We also showed that high K+ intake and prepuberal gonadectomy (Gx) diminish BP with a concomitant increase in UKa and plasma aldosterone levels. Since kallikrein co-localize in the same distal nephron segments of aldosterone effectors, we explored the effect of pharmacological blockage of aldosterone receptor, epithelial Na+ (ENaC) and the rectifying outer medulla K+ (ROMK) channels in different gonad contexts on the gene expression, renal tissue content and urine release of kallikrein. Klk1 gene expression was determined by real-time PCR and enzymatic activity of kallikrein by the amidolytic method. We found that the inhibition of the aldosterone receptor by spironolactone increases kallikrein renal tissue storage and decreases its urinary activity, especially in Gx rats. Moreover, ENaC blockade by benzamil increases the renal content of kallikrein without affecting synthesis or excretion, especially in females and Gx animals, while the inhibition of ROMK by glibenclamide increases the synthesis and renal content of kallikrein only in intact male animals. We concluded that RKKS regulation showed sexual dimorphism and seemed to be modulated by sex hormones throughout a process involving aldosterone and the aldosterone-sensitive ion channels..
Assuntos
Aldosterona , Hipertensão , Masculino , Ratos , Feminino , Animais , Aldosterona/metabolismo , Ratos Endogâmicos SHR , Receptores de Mineralocorticoides/metabolismo , Hipertensão/metabolismo , Calicreínas/genética , Calicreínas/metabolismo , Rim/metabolismo , Néfrons/metabolismo , Sódio/metabolismo , Canais Iônicos/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismoRESUMO
Metastatic prostate cancer (PCa) cells soiling in the bone require a metabolic adaptation. Here, we identified the metabolic genes fueling the seeding of PCa in the bone niche. Using a transwell co-culture system of PCa (PC3) and bone progenitor cells (MC3T3 or Raw264.7), we assessed the transcriptome of PC3 cells modulated by soluble factors released from bone precursors. In a Principal Component Analysis using transcriptomic data from human PCa samples (GSE74685), the altered metabolic genes found in vitro were able to stratify PCa patients in two defined groups: primary PCa and bone metastasis, confirmed by an unsupervised clustering analysis. Thus, the early transcriptional metabolic profile triggered in the in vitro model has a clinical correlate in human bone metastatic samples. Further, the expression levels of five metabolic genes (VDR, PPARA, SLC16A1, GPX1 and PAPSS2) were independent risk-predictors of death in the SU2C-PCF dataset and a risk score model built using this lipid-associated signature was able to discriminate a subgroup of bone metastatic PCa patients with a 23-fold higher risk of death. This signature was validated in a PDX pre-clinical model when comparing MDA-PCa-183 growing intrafemorally vs. subcutaneously, and appears to be under the regulatory control of the Protein Kinase A (PKA) signaling pathway. Secretome analyses of conditioned media showcased fibronectin and type-1 collagen as critical bone-secreted factors that could regulate tumoral PKA. Overall, we identified a novel lipid gene signature, driving PCa aggressive metastatic disease pointing to PKA as a potential hub to halt progression.
RESUMO
Heme oxygenase 1 (HO-1), the rate-limiting enzyme in heme degradation, is involved in the maintenance of cellular homeostasis, exerting a cytoprotective role by its antioxidative and anti-inflammatory functions. HO-1 and its end products, biliverdin, carbon monoxide and free iron (Fe2+), confer cytoprotection against inflammatory and oxidative injury. Additionally, HO-1 exerts antiviral properties against a diverse range of viral infections by interfering with replication or activating the interferon (IFN) pathway. Severe cases of coronavirus disease 2019 (COVID-19), an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are characterized by systemic hyperinflammation, which, in some cases, leads to severe or fatal symptoms as a consequence of respiratory failure, lung and heart damage, kidney failure, and nervous system complications. This review summarizes the current research on the protective role of HO-1 in inflammatory diseases and against a wide range of viral infections, positioning HO-1 as an attractive target to ameliorate clinical manifestations during COVID-19.
RESUMO
Prostate cancer (PCa) cells display abnormal expression of proteins resulting in an augmented capacity to resist chemotherapy and colonize distant organs. We have previously shown the anti-tumoral role of heme oxygenase 1 (HO-1) in this disease. In this work, we undertook a mass spectrometry-based proteomics study to identify HO-1 molecular interactors that might collaborate with its modulatory function in PCa. Among the HO-1 interactors, we identified proteins with nuclear localization. Correlation analyses, using the PCa GSE70770 dataset, showed a significant and positive correlation between HMOX1 and 6 of those genes. Alternatively, HMOX1 and YWHAZ showed a negative correlation. Univariable analyses evidenced that high expression of HNRNPA2B1, HSPB1, NPM1, DDB1, HMGA1, ZC3HAV1, and HMOX1 was associated with increased relapse-free survival (RFS) in PCa patients. Further, PCa patients with high HSPB1/HMOX1, DDB1/HMOX1, and YWHAZ/HMOX1 showed a worse RFS compared with patients with lower ratios. Moreover, a decrease in RFS for patients with higher scores of this signature was observed using a prognostic risk score model. However, the only factor significantly associated with a higher risk of relapse was high YWHAZ. Multivariable analyses confirmed HSPB1, DDB1, and YWHAZ independence from PCa clinic-pathological parameters. In parallel, co-immunoprecipitation analysis in PCa cells ascertained HO-1/14-3-3ζ/δ (protein encoded by YWHAZ) interaction. Herein, we describe a novel protein interaction between HO-1 and 14-3-3ζ/δ in PCa and highlight these factors as potential therapeutic targets.
RESUMO
Interferon gamma (IFN-γ) may be potential adjuvant immunotherapy for COVID-19 patients. In this work, we assessed gene expression profiles associated with the IFN-γ pathway in response to SARS-CoV-2 infection. Employing a case-control study from SARS-CoV-2-positive and -negative patients, we identified IFN-γ-associated pathways to be enriched in positive patients. Bioinformatics analyses showed upregulation of MAP2K6, CBL, RUNX3, STAT1, and JAK2 in COVID-19-positive vs. -negative patients. A positive correlation was observed between STAT1/JAK2, which varied alongside the patient's viral load. Expression of MX1, MX2, ISG15, and OAS1 (four well-known IFN-stimulated genes (ISGs)) displayed upregulation in COVID-19-positive vs. -negative patients. Integrative analyses showcased higher levels of ISGs, which were associated with increased viral load and STAT1/JAK2 expression. Confirmation of ISGs up-regulation was performed in vitro using the A549 lung cell line treated with Poly (I:C), a synthetic analog of viral double-stranded RNA; and in different pulmonary human cell lines and ferret tracheal biopsies infected with SARS-CoV-2. A pre-clinical murine model of Coronavirus infection confirmed findings displaying increased ISGs in the liver and lungs from infected mice. Altogether, these results demonstrate the role of IFN-γ and ISGs in response to SARS-CoV-2 infection, highlighting alternative druggable targets that can boost the host response.
Assuntos
COVID-19 , Humanos , Animais , Camundongos , Interferon gama/genética , SARS-CoV-2 , Estudos de Casos e Controles , RNA de Cadeia Dupla , Furões , MAP Quinase Quinase 6/genéticaRESUMO
In embryonic stem (ES) cells, oxidative stress control is crucial for genomic stability, self-renewal, and cell differentiation. Heme oxygenase-1 (HO-1) is a key player of the antioxidant system and is also involved in stem cell differentiation and pluripotency acquisition. We found that the HO-1 gene is expressed in ES cells and induced after promoting differentiation. Moreover, downregulation of the pluripotency transcription factor (TF) OCT4 increased HO-1 mRNA levels in ES cells, and analysis of ChIP-seq public data revealed that this TF binds to the HO-1 gene locus in pluripotent cells. Finally, ectopic expression of OCT4 in heterologous systems repressed a reporter carrying the HO-1 gene promoter and the endogenous gene. Hence, this work highlights the connection between pluripotency and redox homeostasis.
Assuntos
Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Proteínas de Membrana/genética , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/genética , Animais , Benzamidas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Embrião de Mamíferos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Heme Oxigenase-1/metabolismo , Luciferases/genética , Luciferases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/efeitos dos fármacos , Células NIH 3T3 , Proteína Homeobox Nanog/antagonistas & inibidores , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Fator 3 de Transcrição de Octâmero/antagonistas & inibidores , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Regiões Promotoras Genéticas , Piridinas/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXB1/antagonistas & inibidores , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Transcrição GênicaRESUMO
Nuclear transport and vesicle trafficking are key cellular functions involved in the pathogenesis of RNA viruses. Among other pleiotropic effects on virus-infected host cells, ivermectin (IVM) inhibits nuclear transport mechanisms mediated by importins and atorvastatin (ATV) affects actin cytoskeleton-dependent trafficking controlled by Rho GTPases signaling. In this work, we first analyzed the response to infection in nasopharyngeal swabs from SARS-CoV-2-positive and -negative patients by assessing the gene expression of the respective host cell drug targets importins and Rho GTPases. COVID-19 patients showed alterations in KPNA3, KPNA5, KPNA7, KPNB1, RHOA, and CDC42 expression compared with non-COVID-19 patients. An in vitro model of infection with Poly(I:C), a synthetic analog of viral double-stranded RNA, triggered NF-κB activation, an effect that was halted by IVM and ATV treatment. Importin and Rho GTPases gene expression was also impaired by these drugs. Furthermore, through confocal microscopy, we analyzed the effects of IVM and ATV on nuclear to cytoplasmic importin α distribution, alone or in combination. Results showed a significant inhibition of importin α nuclear accumulation under IVM and ATV treatments. These findings confirm transcriptional alterations in importins and Rho GTPases upon SARS-CoV-2 infection and point to IVM and ATV as valid drugs to impair nuclear localization of importin α when used at clinically-relevant concentrations.
Assuntos
Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Atorvastatina/farmacologia , Tratamento Farmacológico da COVID-19 , Ivermectina/farmacologia , SARS-CoV-2/efeitos dos fármacos , alfa Carioferinas/metabolismo , Células A549 , Citoesqueleto de Actina/efeitos dos fármacos , Animais , Antivirais/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Reposicionamento de Medicamentos , Células HeLa , Humanos , NF-kappa B/metabolismo , Células Vero , Proteínas rho de Ligação ao GTP/metabolismoRESUMO
Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-ß and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Sumoilação , Animais , Células-Tronco Embrionárias/metabolismo , Ubiquitina/metabolismoRESUMO
Stem cells genome safeguarding requires strict oxidative stress control. Heme oxygenase-1 (HO-1) and p53 are relevant components of the cellular defense system. p53 controls cellular response to multiple types of harmful stimulus, including oxidative stress. Otherwise, besides having a protective role, HO-1 is also involved in embryo development and in embryonic stem (ES) cells differentiation. Although both proteins have been extensively studied, little is known about their relationship in stem cells. The aim of this work is to explore HO-1-p53 interplay in ES cells. We studied HO-1 expression in p53 knockout (KO) ES cells and we found that they have higher HO-1 protein levels but similar HO-1 mRNA levels than the wild type (WT) ES cell line. Furthermore, cycloheximide treatment increased HO-1 abundance in p53 KO cells suggesting that p53 modulates HO-1 protein stability. Notably, H2O2 treatment did not induce HO-1 expression in p53 KO ES cells. Finally, SOD2 protein levels are also increased while Sod2 transcripts are not in KO cells, further suggesting that the p53 null phenotype is associated with a reinforcement of the antioxidant machinery. Our results demonstrate the existence of a connection between p53 and HO-1 in ES cells, highlighting the relationship between these stress defense pathways.
Assuntos
Heme Oxigenase-1/fisiologia , Células-Tronco Embrionárias Humanas , Proteína Supressora de Tumor p53/fisiologia , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Heme Oxigenase-1/genética , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Estresse Oxidativo , Transdução de Sinais , Superóxido Dismutase/metabolismoRESUMO
In a published case-control study (GSE152075) from SARS-CoV-2-positive (n = 403) and -negative patients (n = 50), we analyzed the response to infection assessing gene expression of host cell receptors and antiviral proteins. The expression analysis associated with reported risk factors for COVID-19 was also assessed. SARS-CoV-2 cases had higher ACE2, but lower TMPRSS2, BSG/CD147, and CTSB expression compared with negative cases. COVID-19 patients' age negatively affected ACE2 expression. MX1 and MX2 were higher in COVID-19 patients. A negative trend for MX1 and MX2 was observed as patients' age increased. Principal-component analysis determined that ACE2, MX1, MX2, and BSG/CD147 expression was able to cluster non-COVID-19 and COVID-19 individuals. Multivariable regression showed that MX1 expression significantly increased for each unit of viral load increment. Altogether, these findings support differences in ACE2, MX1, MX2, and BSG/CD147 expression between COVID-19 and non-COVID-19 patients and point out to MX1 as a critical responder in SARS-CoV-2 infection.
RESUMO
OBJECTIVE: Redox homeostasis maintenance is essential to bring about cellular functions. Particularly, embryonic stem cells (ESCs) have high fidelity mechanisms for DNA repair, high activity of different antioxidant enzymes and low levels of oxidative stress. Although the expression and activity of antioxidant enzymes are reduced throughout the differentiation, the knowledge about the transcriptional regulation of genes involved in defense against oxidative stress is yet restricted. Since glutathione is a central component of a complex system involved in preserving cellular redox status, we aimed to study whether the expression of the glutathione reductase (Gsr) gene, which encodes an essential enzyme for cellular redox homeostasis, is modulated by the transcription factors critical for self-renewal and pluripotency of ESCs. RESULTS: We found that Gsr gene is expressed in ESCs during the pluripotent state and it was upregulated when these cells were induced to differentiate, concomitantly with Nanog decreased expression. Moreover, we found an increase in Gsr mRNA levels when Nanog was downregulated by a specific shRNA targeting this transcription factor in ESCs. Our results suggest that Nanog represses Gsr gene expression in ESCs, evidencing a role of this crucial pluripotency transcription factor in preservation of redox homeostasis in stem cells.
Assuntos
Glutationa Redutase/genética , Células-Tronco Embrionárias Murinas/metabolismo , Proteína Homeobox Nanog/genética , Células-Tronco Pluripotentes/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Genes Reporter , Glutationa Redutase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteína Homeobox Nanog/antagonistas & inibidores , Proteína Homeobox Nanog/metabolismo , Células-Tronco Pluripotentes/citologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de SinaisRESUMO
Trophoblast cells migrate and invade the decidual stroma in a tightly regulated process to maintain immune homeostasis at the maternal-placental interface during the first weeks of pregnancy. Locally synthesized factors modulate trophoblast cell function and their interaction with maternal leukocytes to promote the silent clearance of apoptotic cells. The vasoactive intestinal peptide (VIP) is a pleiotropic polypeptide with trophic and anti-inflammatory effects in murine pregnancy models. We explored the effect of VIP on two human first trimester trophoblast cell lines, particularly on their migration, invasiveness and interaction with phagocytic cells, and the signalling and regulatory pathways involved. We found that VIP enhanced trophoblast cell migration and invasion through the activation of high affinity VPAC receptors and PKA-CRE signalling pathways. VIP knocked-down trophoblast cells showed reduced migration in basal and leukemic inhibitor factor (LIF)-elicited conditions. In parallel, VIP-silenced trophoblast cells failed to induce the phagocytosis of apoptotic bodies and the expression of immunosuppressant markers by human monocytes. Our results suggest that VIP-mediated autocrine pathways regulate trophoblast cell function and contribute to immune homeostasis maintenance at placentation and may provide new clues for therapeutic intervention in pregnancies complicated by defective deep placentation.
Assuntos
Comunicação Autócrina , Fagócitos/citologia , Trofoblastos/citologia , Peptídeo Intestinal Vasoativo/metabolismo , Linhagem Celular , Movimento Celular , Feminino , Técnicas de Silenciamento de Genes , Humanos , Gravidez , Primeiro Trimestre da Gravidez , Proteínas Quinases/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Transdução de Sinais , Peptídeo Intestinal Vasoativo/genéticaRESUMO
Maternal fever is common during pregnancy and has for many years been suspected to harm the developing fetus. Whether increased maternal temperature produces exaggerated apoptosis in trophoblast cells remains unclear. Since p53 is a critical regulator of apoptosis we hypothesized that increased temperature in placenta produces abnormal expression of proteins in the p53 pathway and finally caspase-3 activation. Moreover, leptin, produced by placenta, is known to promote the proliferation and survival of trophoblastic cells. Thus, we aimed to study the possible role of leptin preventing apoptosis triggered by high temperature, as well as the molecular mechanisms underlying this effect. Fresh placental tissue was collected from normal pregnancies. Explants of placental villi were exposed to 37 °C, 40 °C and 42 °C during 3 h in the presence or absence of 10 nM leptin in DMEM-F12 medium. Western blotting and qRT-PCR was performed to analyze the expression of p53 and downstream effector, P53AIP1, Mdm2, p21, BAX and BCL-2 as well as the activated cleaved form of caspase-3 and the fragment of cytokeratin-18 (CK-18) cleaved at Asp396 (neoepitope M30). Phosphorylation of the Ser 46 residue on p53, the expression of P53AIP1, Mdm2, p21, as well as caspase-3 and CK-18 were significantly increased in explants at 40 °C and 42 °C. Conversely, these effects were significantly attenuated by leptin 10 nM at both 40 °C and 42 °C. The BCL2/BAX ratio was also significantly decreased in explants at 40 °C and 42 °C compared with explants incubated at 37 °C, which was prevented by leptin stimulation. These data illustrate the potential role of leptin for reducing apoptosis in trophoblast explants, including trophoblastic cells, triggered by high temperature, by preventing the activation of p53 signaling.
Assuntos
Apoptose/efeitos dos fármacos , Temperatura Alta , Leptina/farmacologia , Placenta/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Apoptose/fisiologia , Caspase 3/metabolismo , Vilosidades Coriônicas/efeitos dos fármacos , Vilosidades Coriônicas/metabolismo , Feminino , Humanos , Queratina-18/metabolismo , Fosforilação/efeitos dos fármacos , Placenta/metabolismo , GravidezRESUMO
Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 µM PD98059 or 10 µM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways.
Assuntos
Leptina/metabolismo , Trofoblastos/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Linhagem Celular , Proliferação de Células , Humanos , Sistema de Sinalização das MAP Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismoRESUMO
Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells.