Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Commun Signal ; 14: 4, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26759169

RESUMO

BACKGROUND: Cells of the tumor microenvironment are recognized as important determinants of the tumor biology. The adjacent non-malignant cells can regulate drug responses of the cancer cells by secreted paracrine factors and direct interactions with tumor cells. RESULTS: Human mesenchymal stromal cells (MSC) actively contribute to tumor microenvironment. Here we focused on their response to chemotherapy as during the treatment these cells become affected. We have shown that the secretory phenotype and behavior of mesenchymal stromal cells influenced by cisplatin differs from the naïve MSC. MSC were more resistant to the concentrations of cisplatin, which was cytotoxic for tumor cells. They did not undergo apoptosis, but a part of MSC population underwent senescence. However, MSC pretreatment with cisplatin led to changes in phosphorylation profiles of many kinases and also increased secretion of IL-6 and IL-8 cytokines. These changes in cytokine and phosphorylation profile of MSC led to increased chemoresistance and stemness of breast cancer cells. CONCLUSION: Taken together here we suggest that the exposure of the chemoresistant cells in the tumor microenvironment leads to substantial alterations and might lead to promotion of acquired microenvironment-mediated chemoresistance and stemness.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Cisplatino/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mama/efeitos dos fármacos , Mama/imunologia , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Interleucina-6/imunologia , Interleucina-8/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia
2.
J Gene Med ; 17(1-2): 54-67, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25677845

RESUMO

BACKGROUND: Mesenchymal stromal cells (MSC) are a promising tool for targeted cancer therapy due to their tumour-homing ability. Intrinsic resistance enables the MSC to longer tolerate therapeutic factors, such as prodrug converting enzymes, cytokines and pro-apoptotic proteins. Tumour necrosis factor alpha (TNFα) is known to be cytotoxic to a variety of cancer cells and exert a tumour-destructive capacity. METHODS: MSC were retrovirally transduced to stable express an exogenous gene encoding the desired therapeutic agent hTNFα. The effect of a TNFα-producing adipose tissue-derived MSC (AT-MSC/hTNFα) was tested on the tumour cell lines of different origins: melanoma (A375), breast carcinoma (SKBR3, MDA-MB-231), colon carcinoma (HT29), ovarian carcinoma (SKOV3) and glioblastoma (U87-MG) cells. The tumour suppressing effect of AT-MSC/hTNFα on A375 melanoma xenografts was monitored in an immunodeficient mouse model in vivo. RESULTS: Engineered AT-MSC are able to constitutively secrete human TNFα protein, induce apoptosis of tumour cell lines via caspase 3/7 activation and inhibit the tumour cell proliferation in vitro. Melanoma A375 and breast carcinoma SKBR3 cells were the most sensitive, and their proliferation in vitro was reduced by conditioned media produced by AT-MSC/hTNFα to 60% and 40%, respectively. The previously reported tumour supportive effect of AT-MSC on subcutaneous A375 melanoma xenograft growth was neutralised and suppressed by engineered AT-MSC stably producing hTNFα. When AT-MSC/hTNFα were coinjected with A375 melanoma cells, the tumour mass inhibition was up to 97.5%. CONCLUSIONS: The results of the present study demonstrate that tumour cells respond to hTNFα-based treatment mediated by genetically engineered AT-MSC/hTNFα both in vitro and in vivo.


Assuntos
Engenharia Genética , Melanoma/genética , Melanoma/patologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Fator de Necrose Tumoral alfa/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Expressão Gênica , Terapia Genética , Vetores Genéticos/genética , Humanos , Melanoma/metabolismo , Melanoma/terapia , Camundongos , Retroviridae/genética , Transdução Genética , Carga Tumoral/genética , Fator de Necrose Tumoral alfa/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Polymers (Basel) ; 15(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37177163

RESUMO

Bacterial nanocellulose (BNC) has a negative surface charge in physiological environments, which allows the adsorption of calcium ions to initiate the nucleation of different calcium phosphate phases. The aim of this study was to investigate different methods of mineralization in three-dimensional microporous bacterial nanocellulose with the intention of mimicking the composition, structure, and biomechanical properties of natural bone. To generate the 3D microporous biomaterial, porogen particles were incorporated during BNC fermentation with the Komagataeibacter medellinensis strain. Calcium phosphates (CPs) were deposited onto the BNC scaffolds in five immersion cycles, alternating between calcium and phosphate salts in their insoluble forms. Scanning electron microscopy (SEM) showed that the scaffolds had different pore sizes (between 70 and 350 µm), and their porous interconnectivity was affected by the biomineralization method and time. The crystals on the BNC surface were shown to be rod-shaped, with a calcium phosphate ratio similar to that of immature bone, increasing from 1.13 to 1.6 with increasing cycle numbers. These crystals also increased in size with an increasing number of cycles, going from 25.12 to 35.9 nm. The main mineral phase observed with X-ray diffraction was octacalcium dihydrogen hexakis phosphate (V) pentahydrate (OCP). In vitro studies showed good cellular adhesion and high cell viability (up to 95%) with all the scaffolds. The osteogenic differentiation of human bone marrow mesenchymal stem cells on the scaffolds was evaluated using bone expression markers, including alkaline phosphatase, osteocalcin, and osteopontin. In conclusion, it is possible to prepare 3D BNC scaffolds with controlled microporosity that allow osteoblast adhesion, proliferation, and differentiation.

5.
Cancer Lett ; 408: 1-9, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28838843

RESUMO

Mesenchymal stromal cells (MSCs) were introduced as tumor-targeted vehicles suitable for delivery of the gene-directed enzyme/prodrug therapy more than 10 years ago. Over these years key properties of tumor cells and MSCs, which are crucial for the treatment efficiency, were examined; and there are some critical issues to be considered for the maximum antitumor effect. Moreover, engineered MSCs expressing enzymes capable of activating non-toxic prodrugs achieved long-term curative effect even in metastatic and hard-to-treat tumor types in pre-clinical scenario(s). These gene-modified MSCs are termed prodrug-activating MSCs throughout the text and represent promising approach for further clinical application. This review summarizes major determinants to be considered for the application of the prodrug-activating MSCs in antitumor therapy in order to maximize therapeutic efficiency.


Assuntos
Antineoplásicos/uso terapêutico , Terapia Genética , Células-Tronco Mesenquimais/citologia , Neoplasias/genética , Neoplasias/terapia , Pró-Fármacos/uso terapêutico , Animais , Humanos , Células-Tronco Mesenquimais/metabolismo , Neoplasias/patologia
6.
Stem Cells Dev ; 25(21): 1640-1651, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27539058

RESUMO

Due to late diagnosis, often recurrence, formation of metastases and resistance to commonly used chemotherapeutics human ovarian carcinoma represents a serious disease with high mortality. Adipose tissue-derived mesenchymal stromal cells (AT-MSC) can serve as vehicles for therapeutic genes and we engineered AT-MSC to express either Herpes simplex virus thymidine kinase (HSVtk-MSC), which phosphorylates ganciclovir (GCV) to its toxic metabolites or yeast fused cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT-MSC), which converts 5-fluorocytosine (5-FC) to highly toxic 5-fluorouracil (5-FU). Here, we reported different responses of cytotoxicity mediated by CD::UPRT-MSC/5-FC treatment on human ovarian carcinoma cell lines-SKOV-3 and A2780 used in adherent or three-dimensional (3D) cell culture and we proved high potential of 3D model to predict results in our in vivo experiments. Both tumor cell lines showed similarly high chemosensitivity to the used treatment in adherent culture, but 3D model revealed severe discrepancy-only 36% of SKOV-3 cells but even 90% of A2780 cells were eliminated. This result served as a prognostic marker-we were able to achieve significantly decreased tumor volumes of subcutaneous xenografts of A2780 cells in nude mice and we prolonged tumor-free survival in 33% of animals bearing highly metastatic ovarian carcinoma after CD::UPRT-MSC/5-FC treatment.

7.
Cancer Microenviron ; 8(1): 1-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25169041

RESUMO

Mesenchymal stromal cells (MSC) exert either tumor-stimulatory or tumor-inhibitory effect. The outcome of the tumor-MSC interaction is dictated by the tumor-specific activating signals. We analyzed the alterations in MSC phenotype in response to stimulation by tumor-secreted paracrine factors. Paracrine factors from human melanoma A375 and glioblastoma 8MGBA cells were used for prolonged culture of MSC to produce derived cells designated DIFF(A)-MSC or DIFF(G)-MSC, respectively. Derived cells were analyzed for the specific surface markers, the expression pattern of MSC markers and fibroblast-specific proteins. Changes in the cell phenotype were evaluated using scratch wound assay and tube formation in vitro; and xenotransplant growth in vivo. Our data show induced expression of vascular endothelial growth factor 2, CD146, fibroblast-specific protein, vimentin and endosialin in DIFF(A)-MSC cells. This indicates their differentiation towards the cells with features of tumor-associated fibroblasts upon stimulation with melanoma-secreted cytokines. Paracrine stimulation in DIFF(G)-MSC led to up-regulation of the genes involved in the MSC differentiation. MSC-specific surface marker characteristics were preserved in derived DIFF(A)-MSC and DIFF(G)-MSC cells. However, we observed increased proportion of CD146 and GD2 (neural ganglioside) positive cells and decreased expression of marker NG2 in the MSC exposed to tumor-conditioned medium. Melanoma-CM increased MSC migration, glioblastoma-CM compromised angiogenic capacity of MSC in vitro and the protumorigenic effect in vivo. Our data directly compare the pleiotropic effects mediated by the malignant cells on the MSC. Secreted paracrine factors from melanoma or glioblastoma differently changed molecular traits in MSC, which explains the dual role of MSC in tumor growth.

8.
J Exp Clin Cancer Res ; 34: 33, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25884597

RESUMO

BACKGROUND: Metastatic spread of tumor cells remains a serious problem in cancer treatment. Gene-directed enzyme/prodrug therapy mediated by tumor-homing genetically engineered mesenchymal stromal cells (MSC) represents a promising therapeutic modality for elimination of disseminated cells. Efficacy of gene-directed enzyme/prodrug therapy can be improved by combination of individual systems. We aimed to define the combination effect of two systems of gene therapy mediated by MSC, and evaluate the ability of systemically administered genetically engineered mesenchymal stromal cells to inhibit the growth of experimental metastases derived from human breast adenocarcinoma cells MDA-MB-231/EGFP. METHODS: Human adipose tissue-derived mesenchymal stromal cells (AT-MSC) were retrovirally transduced with fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CD::UPRT) or with Herpes simplex virus thymidine kinase (HSVtk). Engineered MSC were cocultured with tumor cells in the presence of prodrugs 5-fluorocytosin (5-FC) and ganciclovir (GCV). Combination effect of these enzyme/prodrug approaches was calculated. SCID/bg mice bearing experimental lung metastases were treated with CD::UPRT-MSC, HSVtk-MSC or both in combination in the presence of respective prodrug(s). Treatment efficiency was evaluated by EGFP-positive cell detection by flow cytometry combined with real-time PCR quantification of human cells in mouse organs. Results were confirmed by histological and immunohistochemical examination. RESULTS: We demonstrated various extent of synergy depending on tested cell line and experimental setup. The strongest synergism was observed on breast cancer-derived cell line MDA-MB-231/EGFP. Systemic administration of CD::UPRT-MSC and HSVtk-MSC in combination with 5-FC and GCV inhibited growth of MDA-MB-231 induced lung metastases. CONCLUSIONS: Combined gene-directed enzyme/prodrug therapy mediated by MSC exerted synergic cytotoxic effect and resulted in high therapeutic efficacy in vivo.


Assuntos
Ganciclovir/farmacologia , Terapia Genética , Neoplasias Pulmonares/patologia , Células-Tronco Mesenquimais/metabolismo , Timidina Quinase/genética , Transdução Genética , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Neoplasias Pulmonares/secundário , Neoplasias Pulmonares/terapia , Transplante de Células-Tronco Mesenquimais , Camundongos , Vírus da Leucemia Murina de Moloney/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA