RESUMO
Macrophage infiltration is a hallmark of solid cancers, and overall macrophage infiltration correlates with lower patient survival and resistance to therapy. Tumor-associated macrophages, however, are phenotypically and functionally heterogeneous. Specific subsets of tumor-associated macrophage might be endowed with distinct roles on cancer progression and antitumor immunity. Here, we identify a discrete population of FOLR2+ tissue-resident macrophages in healthy mammary gland and breast cancer primary tumors. FOLR2+ macrophages localize in perivascular areas in the tumor stroma, where they interact with CD8+ T cells. FOLR2+ macrophages efficiently prime effector CD8+ T cells ex vivo. The density of FOLR2+ macrophages in tumors positively correlates with better patient survival. This study highlights specific roles for tumor-associated macrophage subsets and paves the way for subset-targeted therapeutic interventions in macrophages-based cancer therapies.
Assuntos
Neoplasias da Mama , Macrófagos , Mama/imunologia , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos , Feminino , Receptor 2 de Folato , Humanos , Linfócitos do Interstício Tumoral , PrognósticoRESUMO
Members of the IL-17 cytokine family play an important role in protection against pathogens through the induction of different effector mechanisms. We determined that IL-17A, IL-17E and IL-17F are produced during the acute phase of T. cruzi infection. Using IL-17RA knockout (KO) mice, we demonstrate that IL-17RA, the common receptor subunit for many IL-17 family members, is required for host resistance during T. cruzi infection. Furthermore, infected IL-17RA KO mice that lack of response to several IL-17 cytokines showed amplified inflammatory responses with exuberant IFN-γ and TNF production that promoted hepatic damage and mortality. Absence of IL-17RA during T. cruzi infection resulted in reduced CXCL1 and CXCL2 expression in spleen and liver and limited neutrophil recruitment. T. cruzi-stimulated neutrophils secreted IL-10 and showed an IL-10-dependent suppressive phenotype in vitro inhibiting T-cell proliferation and IFN-γ production. Specific depletion of Ly-6G+ neutrophils in vivo during T. cruzi infection raised parasitemia and serum IFN-γ concentration and resulted in increased liver pathology in WT mice and overwhelming wasting disease in IL-17RA KO mice. Adoptively transferred neutrophils were unable to migrate to tissues and to restore resistant phenotype in infected IL-17RA KO mice but migrated to spleen and liver of infected WT mice and downregulated IFN-γ production and increased survival in an IL-10 dependent manner. Our results underscore the role of IL-17RA in the modulation of IFN-γ-mediated inflammatory responses during infections and uncover a previously unrecognized regulatory mechanism that involves the IL-17RA-mediated recruitment of suppressive IL-10-producing neutrophils.
Assuntos
Doença de Chagas/imunologia , Neutrófilos/imunologia , Receptores de Interleucina-17/imunologia , Transdução de Sinais , Trypanosoma cruzi/imunologia , Animais , Células Cultivadas , Inflamação/imunologia , Interferon gama/imunologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-17/imunologia , Fígado/imunologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Baço/imunologia , Baço/metabolismoRESUMO
Regulatory T cells (Tregs) are plastic cells playing a pivotal role in the maintenance of immune homeostasis. Tregs actively adapt to the microenvironment where they reside; as a consequence, their molecular and functional profiles differ among tissues and pathologies. In tumors, the features acquired by Tregs remains poorly characterized. Here, we observe that human tumor-infiltrating Tregs selectively overexpress CD74, the MHC class II invariant chain. CD74 has been previously described as a regulator of antigen-presenting cell biology, however its function in Tregs remains unknown. CD74 genetic deletion in human primary Tregs reveals that CD74KO Tregs exhibit major defects in the organization of their actin cytoskeleton and intracellular organelles. Additionally, intratumoral CD74KO Tregs show a decreased activation, a drop in Foxp3 expression, a low accumulation in the tumor, and consistently, they are associated with accelerated tumor rejection in preclinical models in female mice. These observations are unique to tumor conditions as, at steady state, CD74KO-Treg phenotype, survival, and suppressive capacity are unaffected in vitro and in vivo. CD74 therefore emerges as a specific regulator of tumor-infiltrating Tregs and as a target to interfere with Treg anti-tumor activity.
Assuntos
Antígenos de Diferenciação de Linfócitos B , Antígenos de Histocompatibilidade Classe II , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Animais , Antígenos de Diferenciação de Linfócitos B/metabolismo , Antígenos de Diferenciação de Linfócitos B/genética , Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/genética , Humanos , Feminino , Camundongos , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Microambiente Tumoral/imunologia , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Conventional CD4+ T (Tconv) lymphocytes play important roles in tumor immunity; however, their contribution to tumor elimination remains poorly understood. Here, we describe a subset of tumor-infiltrating Tconv cells characterized by the expression of CD39. In several mouse cancer models, we observed that CD39+ Tconv cells accumulated in tumors but were absent in lymphoid organs. Compared to tumor CD39- counterparts, CD39+ Tconv cells exhibited a cytotoxic and exhausted signature at the transcriptomic level, confirmed by high protein expression of inhibitory receptors and transcription factors related to the exhaustion. Additionally, CD39+ Tconv cells showed increased production of IFNγ, granzyme B, perforin and CD107a expression, but reduced production of TNF. Around 55% of OVA-specific Tconv from B16-OVA tumor-bearing mice, expressed CD39. In vivo CTLA-4 blockade induced the expansion of tumor CD39+ Tconv cells, which maintained their cytotoxic and exhausted features. In breast cancer patients, CD39+ Tconv cells were found in tumors and in metastatic lymph nodes but were less frequent in adjacent non-tumoral mammary tissue and not detected in non-metastatic lymph nodes and blood. Human tumor CD39+ Tconv cells constituted a heterogeneous cell population with features of exhaustion, high expression of inhibitory receptors and CD107a. We found that high CD4 and ENTPD1 (CD39) gene expression in human tumor tissues correlated with a higher overall survival rate in breast cancer patients. Our results identify CD39 as a biomarker of Tconv cells, with characteristics of both exhaustion and cytotoxic potential, and indicate CD39+ Tconv cells as players within the immune response against tumors.
Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Linfócitos T Reguladores/metabolismo , Antígeno CTLA-4 , Linfócitos T CD4-Positivos , Neoplasias da Mama/metabolismoRESUMO
IL-17 immune responses in cancer are controversial, with both tumor-promoting and tumor-repressing effects observed. To clarify the role of IL-17 signaling in cancer progression, we used syngeneic tumor models from different tissue origins. We found that deficiencies in host IL-17RA or IL-17A/F expression had varying effects on the in vivo growth of different solid tumors including melanoma, sarcoma, lymphoma, and leukemia. In each tumor type, the absence of IL-17 led to changes in the expression of mediators associated with inflammation and metastasis in the tumor microenvironment. Furthermore, IL-17 signaling deficiencies in the hosts resulted in decreased anti-tumor CD8+ T cell immunity and caused tumor-specific changes in several lymphoid cell populations. Our findings were associated with distinct patterns of IL-17A/F cytokine and receptor subunit expression in the injected tumor cell lines. These patterns affected tumor cell responsiveness to IL-17 and downstream intracellular signaling, leading to divergent effects on cancer progression. Additionally, we identified IL-17RC as a critical determinant of the IL-17-mediated response in tumor cells and a potential biomarker for IL-17 signaling effects in tumor progression. Our study offers insight into the molecular mechanisms underlying IL-17 activities in cancer and lays the groundwork for developing personalized immunotherapies.
Assuntos
Neoplasias , Receptores de Interleucina-17 , Humanos , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo , Interleucina-17 , Transdução de Sinais , Linfócitos T CD8-Positivos , Inflamação , Neoplasias/genéticaRESUMO
Senescent T cells have been described during aging, chronic infections, and cancer; however, a comprehensive study of the phenotype, function, and transcriptional program of this T cell population in breast cancer (BC) patients is missing. Compared to healthy donors (HDs), BC patients exhibit an accumulation of KLRG-1+CD57+ CD4+ and CD8+ T cells in peripheral blood. These T cells infiltrate tumors and tumor-draining lymph nodes. KLRG-1+CD57+ CD4+ and CD8+ T cells from BC patients and HDs exhibit features of senescence, and despite their inhibitory receptor expression, they produce more effector cytokines and exhibit higher expression of Perforin, Granzyme B, and CD107a than non-senescent subsets. When compared to blood counterparts, tumor-infiltrating senescent CD4+ T cells show similar surface phenotype but reduced cytokine production. Transcriptional profiling of senescent CD4+ T cells from the peripheral blood of BC patients reveals enrichment in genes associated with NK or CD8+-mediated cytotoxicity, TCR-mediated stimulation, and cell exhaustion compared to non-senescent T cells. Comparison of the transcriptional profile of senescent CD4+ T cells from peripheral blood of BC patients with those of HDs highlighted marked similarities but also relevant differences. Senescent CD4+ T cells from BC patients show enrichment in T-cell signaling, processes involved in DNA replication, p53 pathways, oncogene-induced senescence, among others compared to their counterparts in HDs. High gene expression of CD4, KLRG-1, and B3GAT1 (CD57), which correlates with increased overall survival for BC patients, underscores the usefulness of the evaluation of the frequency of senescent CD4+ T cells as a biomarker in the follow-up of patients.
Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Senescência Celular , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Neoplasias da Mama/etiologia , Antígenos CD57/metabolismo , Estudos de Casos e Controles , Senescência Celular/genética , Senescência Celular/imunologia , Citotoxicidade Imunológica , Feminino , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Lectinas Tipo C/metabolismo , Contagem de Linfócitos , Linfócitos do Interstício Tumoral/patologia , Receptores Imunológicos/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologiaRESUMO
Cholangiocarcinoma (CCA) results from the malignant transformation of cholangiocytes. Primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are chronic diseases in which cholangiocytes are primarily damaged. Although PSC is an inflammatory condition predisposing to CCA, CCA is almost never found in the autoimmune context of PBC. Here, we hypothesized that PBC might favor CCA immunosurveillance. In preclinical murine models of cholangitis challenged with syngeneic CCA, PBC (but not PSC) reduced the frequency of CCA development and delayed tumor growth kinetics. This PBC-related effect appeared specific to CCA as it was not observed against other cancers, including hepatocellular carcinoma. The protective effect of PBC was relying on type 1 and type 2 T cell responses and, to a lesser extent, on B cells. Single-cell TCR/RNA sequencing revealed the existence of TCR clonotypes shared between the liver and CCA tumor of a PBC host. Altogether, these results evidence a mechanistic overlapping between autoimmunity and cancer immunosurveillance in the biliary tract.
Assuntos
Autoimunidade , Neoplasias dos Ductos Biliares/imunologia , Colangiocarcinoma/imunologia , Colangite/imunologia , Animais , Neoplasias dos Ductos Biliares/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Colangiocarcinoma/patologia , Colangite/patologia , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fígado/imunologia , Fígado/patologia , Camundongos Endogâmicos C57BL , Monitorização Imunológica , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologiaRESUMO
Treatment with anti-CD20, used in many diseases in which B cells play a pathogenic role, has been associated with susceptibility to intracellular infections. Here, we studied the effect of anti-CD20 injection on CD8+ T cell immunity using an experimental model of Trypanosoma cruzi infection, in which CD8+ T cells play a pivotal role. C57BL/6 mice were treated with anti-CD20 for B cell depletion prior to T. cruzi infection. Infected anti-CD20-treated mice exhibited a CD8+ T cell response with a conserved expansion phase followed by an early contraction, resulting in a strong reduction in total and parasite-specific CD8+ T cell numbers at 20 days postinfection. Anti-CD20 injection increased the frequency of apoptotic CD8+ T cells, decreased the number of effector and memory CD8+ T cells, and reduced the frequency of proliferating and cytokine-producing CD8+ T cells. Accordingly, infected anti-CD20-treated mice presented lower cytotoxicity of T. cruzi peptide-pulsed target cells in vivo All of these alterations in CD8+ T cell immunity were associated with increased tissue parasitism. Anti-CD20 injection also dampened the CD8+ T cell response, when this had already been generated, indicating that B cells were involved in the maintenance rather than the induction of CD8+ T cell immunity. Anti-CD20 injection also resulted in a marked reduction in the frequency of interleukin-6 (IL-6)- and IL-17A-producing cells, and recombinant IL-17A (rIL-17A) injection partially restored the CD8+ T cell response in infected anti-CD20-treated mice. Thus, anti-CD20 reduced CD8+ T cell immunity, and IL-17A is a candidate for rescuing deficient responses either directly or indirectly.IMPORTANCE Monoclonal antibody targeting the CD20 antigen on B cells is used to treat the majority of non-Hodgkin lymphoma patients and some autoimmune disorders. This therapy generates adverse effects, notably opportunistic infections and activation of viruses from latency. Here, using the infection murine model with the intracellular parasite Trypanosoma cruzi, we report that anti-CD20 treatment affects not only B cell responses but also CD8+ T cell responses, representing the most important immune effectors involved in control of intracellular pathogens. Anti-CD20 treatment, directly or indirectly, affects cytotoxic T cell number and function, and this deficient response was rescued by the cytokine IL-17A. The identification of IL-17A as the cytokine capable of reversing the poor response of CD8+ T cells provides information about a potential therapeutic treatment aimed at enhancing defective immunity induced by B cell depletion.
Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígenos CD20/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Interleucina-17/imunologia , Animais , Anticorpos Monoclonais/imunologia , Doença de Chagas/prevenção & controle , Feminino , Injeções Intraperitoneais , Interleucina-17/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Trypanosoma cruziRESUMO
Tumor-draining lymph node (TDLN) invasion by metastatic cells in breast cancer correlates with poor prognosis and is associated with local immunosuppression, which can be partly mediated by regulatory T cells (Tregs). Here, we study Tregs from matched tumor-invaded and non-invaded TDLNs, and breast tumors. We observe that Treg frequencies increase with nodal invasion, and that Tregs express higher levels of co-inhibitory/stimulatory receptors than effector cells. Also, while Tregs show conserved suppressive function in TDLN and tumor, conventional T cells (Tconvs) in TDLNs proliferate and produce Th1-inflammatory cytokines, but are dysfunctional in the tumor. We describe a common transcriptomic signature shared by Tregs from tumors and nodes, including CD80, which is significantly associated with poor patient survival. TCR RNA-sequencing analysis indicates trafficking between TDLNs and tumors and ongoing Tconv/Treg conversion. Overall, TDLN Tregs are functional and express a distinct pattern of druggable co-receptors, highlighting their potential as targets for cancer immunotherapy.
Assuntos
Linfonodos/patologia , Metástase Linfática/imunologia , Linfócitos T Reguladores/imunologia , Antígeno B7-1/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Terapia de Imunossupressão , Linfonodos/citologia , Linfonodos/imunologia , Metástase Linfática/patologia , Linfócitos T Reguladores/metabolismoRESUMO
The IL-17 family contributes to host defense against many intracellular pathogens by mechanisms that are not fully understood. CD8+ T lymphocytes are key elements against intracellular microbes, and their survival and ability to mount cytotoxic responses are orchestrated by several cytokines. Here, we demonstrated that IL-17RA-signaling cytokines sustain pathogen-specific CD8+ T cell immunity. The absence of IL-17RA and IL-17A/F during Trypanosoma cruzi infection resulted in increased tissue parasitism and reduced frequency of parasite-specific CD8+ T cells. Impaired IL-17RA-signaling in vivo increased apoptosis of parasite-specific CD8+ T cells, while in vitro recombinant IL-17 down-regulated the pro-apoptotic protein BAD and promoted the survival of activated CD8+ T cells. Phenotypic, functional, and transcriptomic profiling showed that T. cruzi-specific CD8+ T cells derived from IL-17RA-deficient mice presented features of cell dysfunction. PD-L1 blockade partially restored the magnitude of CD8+ T cell responses and parasite control in these mice. Adoptive transfer experiments established that IL-17RA-signaling is intrinsically required for the proper maintenance of functional effector CD8+ T cells. Altogether, our results identify IL-17RA and IL-17A as critical factors for sustaining CD8+ T cell immunity to T. cruzi.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Trypanosoma cruzi/imunologia , Transferência Adotiva , Animais , Apoptose , Sobrevivência Celular , Doença de Chagas/microbiologia , Citocinas/metabolismo , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunomodulação/genética , Interleucina-17/metabolismo , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Camundongos , Camundongos Knockout , Receptores de Interleucina-17/deficiência , Transcrição GênicaRESUMO
While it is now acknowledged that CD4+ T cells expressing CD25 and Foxp3 (Treg cells) regulate immune responses and, consequently, influence the pathogenesis of infectious diseases, the regulatory response mediated by Treg cells upon infection by Trypanosoma cruzi was still poorly characterized. In order to understand the role of Treg cells during infection by this protozoan parasite, we determined in time and space the magnitude of the regulatory response and the phenotypic, functional and transcriptional features of the Treg cell population in infected mice. Contrary to the accumulation of Treg cells reported in most chronic infections in mice and humans, experimental T. cruzi infection was characterized by sustained numbers but decreased relative frequency of Treg cells. The reduction in Treg cell frequency resulted from a massive accumulation of effector immune cells, and inversely correlated with the magnitude of the effector immune response as well as with emergence of acute immunopathology. In order to understand the causes underlying the marked reduction in Treg cell frequency, we evaluated the dynamics of the Treg cell population and found a low proliferation rate and limited accrual of peripheral Treg cells during infection. We also observed that Treg cells became activated and acquired a phenotypic and transcriptional profile consistent with suppression of type 1 inflammatory responses. To assess the biological relevance of the relative reduction in Treg cells frequency observed during T. cruzi infection, we transferred in vitro differentiated Treg cells at early moments, when the deregulation of the ratio between regulatory and conventional T cells becomes significant. Intravenous injection of Treg cells dampened parasite-specific CD8+ T cell immunity and affected parasite control in blood and tissues. Altogether, our results show that limited Treg cell response during the acute phase of T. cruzi infection enables the emergence of protective anti-parasite CD8+ T cell immunity and critically influences host resistance.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/imunologia , Linfócitos T Reguladores/imunologia , Trypanosoma cruzi/imunologia , Transferência Adotiva , Animais , Proliferação de Células , Ativação Linfocitária/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/transplanteRESUMO
Germinal centers (GC) are important sites for high-affinity and long-lived antibody induction. Tight regulation of GC responses is critical for maintaining self-tolerance. Here, we show that Galectin-3 (Gal-3) is involved in GC development. Compared with WT mice, Gal-3 KO mice have more GC B cells and T follicular helper cells, increased percentages of antibody-secreting cells and higher concentrations of immunoglobulins and IFN-γ in serum, and develop a lupus-like disease. IFN-γ blockade in Gal-3 KO mice reduces spontaneous GC formation, class-switch recombination, autoantibody production and renal pathology, demonstrating that IFN-γ overproduction sustains autoimmunity. The results from chimeric mice show that intrinsic Gal-3 signaling in B cells controls spontaneous GC formation. Taken together, our data provide evidence that Gal-3 acts directly on B cells to regulate GC responses via IFN-γ and implicate the potential of Gal-3 as a therapeutic target in autoimmunity.
Assuntos
Doenças Autoimunes/imunologia , Galectina 3/deficiência , Interferon gama/imunologia , Animais , Autoanticorpos/imunologia , Doenças Autoimunes/genética , Autoimunidade , Linfócitos B/imunologia , Feminino , Galectina 3/genética , Galectina 3/imunologia , Centro Germinativo/imunologia , Humanos , Interferon gama/genética , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Camundongos , Camundongos Endogâmicos C57BLRESUMO
The ability of CD8+ T lymphocytes to eliminate tumors is limited by their ability to engender an immunosuppressive microenvironment. Here we describe a subset of tumor-infiltrating CD8+ T cells marked by high expression of the immunosuppressive ATP ecto-nucleotidase CD39. The frequency of CD39highCD8+ T cells increased with tumor growth but was absent in lymphoid organs. Tumor-infiltrating CD8+ T cells with high CD39 expression exhibited features of exhaustion, such as reduced production of TNF and IL2 and expression of coinhibitory receptors. Exhausted CD39+CD8+ T cells from mice hydrolyzed extracellular ATP, confirming that CD39 is enzymatically active. Furthermore, exhausted CD39+CD8+ T cells inhibited IFNγ production by responder CD8+ T cells. In specimens from breast cancer and melanoma patients, CD39+CD8+ T cells were present within tumors and invaded or metastatic lymph nodes, but were barely detectable within noninvaded lymph nodes and absent in peripheral blood. These cells exhibited an exhausted phenotype with impaired production of IFNγ, TNF, IL2, and high expression of coinhibitory receptors. Although T-cell receptor engagement was sufficient to induce CD39 on human CD8+ T cells, exposure to IL6 and IL27 promoted CD39 expression on stimulated CD8+ T cells from human or murine sources. Our findings show how the tumor microenvironment drives the acquisition of CD39 as an immune regulatory molecule on CD8+ T cells, with implications for defining a biomarker of T-cell dysfunction and a target for immunotherapeutic intervention.Significance: The tumor microenvironment elicits a subset of functionally exhausted CD8+ T cells by creating conditions that induce cell surface expression of CD39, an immunosuppressive molecule that can be therapeutically targeted to restore effector T-cell function. Cancer Res; 78(1); 115-28. ©2017 AACR.
Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Feminino , Humanos , Metástase Linfática/imunologia , Metástase Linfática/patologia , Linfócitos do Interstício Tumoral/imunologia , Masculino , Melanoma/imunologia , Melanoma/patologia , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice) infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44- cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able to regulate TNF-producing CD4+ T cells since their absence favor the increase of the number of TNF+ CD4+ in T. cruzi-infected mice.
RESUMO
Adoptive transfer experiments of specific cell populations are widely used methods to assess the role of the injected population on an ongoing process. In the last years, new and unprecedented roles in the regulation of immune responses have been reported for neutrophils. The following protocol is to be used to isolate neutrophils from bone marrow and to inject them in an appropriate host to test the role of neutrophils during infection, inflammation or other pathological conditions.