RESUMO
Hearing impairment (HI) is a prevalent neurosensory condition globally, impacting 5% of the population, with over 50% of congenital cases attributed to genetic etiologies. In Tunisia, HI underdiagnosis prevails, primarily due to limited access to comprehensive clinical tools, particularly for syndromic deafness (SD), characterized by clinical and genetic heterogeneity. This study aimed to uncover the SD spectrum through a 14-year investigation of a Tunisian cohort encompassing over 700 patients from four referral centers (2007-2021). Employing Sanger sequencing, Targeted Panel Gene Sequencing, and Whole Exome Sequencing, genetic analysis in 30 SD patients identified diagnoses such as Usher syndrome, Waardenburg syndrome, cranio-facial-hand-deafness syndrome, and H syndrome. This latter is a rare genodermatosis characterized by HI, hyperpigmentation, hypertrichosis, and systemic manifestations. A meta-analysis integrating our findings with existing data revealed that nearly 50% of Tunisian SD cases corresponded to rare inherited metabolic disorders. Distinguishing between non-syndromic and syndromic HI poses a challenge, where the age of onset and progression of features significantly impact accurate diagnoses. Despite advancements in local genetic characterization capabilities, certain ultra-rare forms of SD remain underdiagnosed. This research contributes critical insights to inform molecular diagnosis approaches for SD in Tunisia and the broader North-African region, thereby facilitating informed decision-making in clinical practice.
RESUMO
[This corrects the article DOI: 10.3389/fgene.2024.1384094.].
RESUMO
Alpha-Mannosidosis (AM) is an ultra-rare storage disorder caused by a deficiency of lysosomal alpha-mannosidase encoded by the MAN2B1 gene. Clinical presentation of AM includes mental retardation, recurrent infections, hearing loss, dysmorphic features, and motor dysfunctions. AM has never been reported in Tunisia. We report here the clinical and genetic study of six patients from two Tunisian families with AM. The AM diagnosis was confirmed by an enzymatic activity assay. Genetic investigation was conducted by Sanger sequencing of the mutational hotspots for the first family and by ES analysis for the second one. In the first family, a frameshift duplication p.(Ser802GlnfsTer129) was identified in the MAN2B1 gene. For the second family, ES analysis led to the identification of a missense mutation p.(Arg229Trp) in the MAN2B1 gene in four affected family members. The p.(Ser802GlnfsTer129) mutation induces a premature termination codon which may trigger RNA degradation by the NMD system. The decrease in the levels of MAN2B1 synthesis could explain the severe phenotype observed in the index case. According to the literature, the p.(Arg229Trp) missense variant does not have an impact on MAN2B1 maturation and transportation, which correlates with a moderate clinical sub-type. To explain the intra-familial variability of cognitive impairment, exome analysis allowed the identification of two likely pathogenic variants in GHR and SLC19A3 genes potentially associated to cognitive decline. The present study raises awareness about underdiagnosis of AM in the region that deprives patients from accessing adequate care. Indeed, early diagnosis is critical in order to prevent disease progression and to propose enzyme replacement therapy.
Assuntos
Proteínas de Transporte/genética , Disfunção Cognitiva/genética , Consanguinidade , Predisposição Genética para Doença , Proteínas de Membrana Transportadoras/genética , alfa-Manosidose/genética , Audiometria , Sequência de Bases , Família , Feminino , Geografia , Humanos , Masculino , Mutação/genética , Linhagem , Fenótipo , Tunísia , Sequenciamento do ExomaRESUMO
Mesenchymal stem cells (MSCs) are known to limit immune responses in vivo by multiple soluble factors. Dickkopf-3 (DKK3), a secreted glycoprotein, has recently been identified as a novel immune modulator. Since DKK3 has been reported to be produced by MSCs, we investigated whether DKK3 contributes to the immune suppression of anti-tumor responses by MSCs. Whereas wild-type MSCs inhibited immune responses against two different transplantation tumors, DKK3-deficient MSCs did not affect the rejection process. Increased CD8(+) T cell and reduced M2-type macrophages infiltration was observed in tumors inoculated together with DKK3-deficient MSCs. Thus, DKK3 could alter the composition of the tumor stroma, thereby supporting the MSCs-mediated suppression of immune responses against these tumor transplants.
RESUMO
Keratinocytes have a pivotal role in the regulation of immune responses, but the impact of antigen presentation by these cells is still poorly understood, particularly in a situation where the antigen will be presented only in adult life. Here, we generated a transgenic mouse model in which keratinocytes exclusively present a myelin basic protein (MBP) peptide covalently linked to the major histocompatibility complex class II ß-chain, solely under inflammatory conditions. In these mice, inflammation caused by epicutaneous contact sensitizer treatment resulted in keratinocyte-mediated expansion of MBP-specific CD4(+) T cells in the skin. Moreover, repeated contact sensitizer application preceding a systemic MBP immunization reduced the reactivity of the respective CD4(+) T cells and lowered the symptoms of the resulting experimental autoimmune encephalomyelitis. This downregulation was CD4(+) T-cell-mediated and dependent on the presence of the immune modulator Dickkopf-3. Thus, presentation of a neo self-antigen by keratinocytes in the inflamed, adult skin can modulate CD4(+) T-cell auto-aggression at a distal organ.
Assuntos
Autoantígenos/metabolismo , Linfócitos T CD4-Positivos/patologia , Dermatite/metabolismo , Dermatite/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linfócitos T CD4-Positivos/metabolismo , Ciclopropanos/farmacologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/prevenção & controle , Genes MHC da Classe II/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Básica da Mielina/genética , Oxazóis/farmacologia , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologiaRESUMO
Carboxypeptidase M (CPM) targets the basic amino acids arginine and lysine present at the C-terminus of peptides or proteins. CPM is thought to be involved in inflammatory processes. This is corroborated by CPM-mediated trimming and modulation of inflammatory factors, and expression of the protease in inflammatory environments. Since the function of CPM in and beyond inflammation remains mainly undefined, the identification of natural substrates can aid in discovering the (patho)physiological role of CPM. CCL1/I-309, with its three C-terminal basic amino acids, forms a potential natural substrate for CPM. CCL1 plays a role not only in inflammation but also in apoptosis, angiogenesis and tumor biology. Enzymatic processing differently impacts the biological activity of chemokines thereby contributing to the complex regulation of the chemokine system. The aim of the present study was to investigate whether (i) CCL1/I-309 is prone to trimming by CPM, and (ii) the biological activity of CCL1 is altered after C-terminal proteolytic processing. CCL1 was identified as a novel substrate for CPM in vitro using mass spectrometry. C-terminal clipping of CCL1 augmented intracellular calcium release mediated by CCR8 but reduced the binding of CCL1 to CCR8. In line with the higher intracellular calcium release, a pronounced increase of the anti-apoptotic activity of CCL1 was observed in the BW5147 cellular model. CCR8 signaling, CCR8 binding and anti-apoptotic activity were unaffected when CPM was exposed to the carboxypeptidase inhibitor DL-2-mercaptomethyl-3-guanidino-ethylthiopropanoic acid. The results of this study suggest that CPM is a likely candidate for the regulation of biological processes relying on the CCL1-CCR8 system.
Assuntos
Apoptose , Cálcio/metabolismo , Quimiocina CCL1/química , Receptores CCR8/metabolismo , Animais , Linhagem Celular Tumoral , Dexametasona/farmacologia , Proteínas Ligadas por GPI/química , Glicosilação , Humanos , Hidrólise , Inflamação , Espectrometria de Massas/métodos , Metaloendopeptidases/química , Camundongos , Modelos Biológicos , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de SinaisRESUMO
Interferon (IFN)-lambda 1, -lambda 2, and -lambda 3 are the latest members of the class II cytokine family and were shown to have antiviral activity. Their receptor is composed of two chains, interleukin-28R/likely interleukin or cytokine or receptor 2 (IL-28R/LICR2) and IL-10R beta, and mediates the tyrosine phosphorylation of STAT1, STAT2, STAT3, and STAT5. Here, we show that activation of this receptor by IFN-lambda 1 can also inhibit cell proliferation and induce STAT4 phosphorylation, further extending functional similarities with type I IFNs. We used IL-28R/LICR2-mutated receptors to identify the tyrosines required for STAT activation, as well as antiproliferative and antiviral activities. We found that IFN-lambda 1-induced STAT2 tyrosine phosphorylation is mediated through tyrosines 343 and 517 of the receptor, which showed some similarities with tyrosines from type I IFN receptors involved in STAT2 activation. These two tyrosines were also responsible for antiviral and antiproliferative activities of IFN-lambda 1. By contrast, STAT4 phosphorylation (and to some extent STAT3 activation) was independent from IL-28R/LICR2 tyrosine residues. Taken together, these observations extend the functional similarities between IFN-lambdas and type I IFNs and shed some new light on the mechanisms of activation of STAT2 and STAT4 by these cytokines.