Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(23): E4676-E4685, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28533375

RESUMO

The activity of the transcription factor nuclear factor-erythroid 2 p45-derived factor 2 (NRF2) is orchestrated and amplified through enhanced transcription of antioxidant and antiinflammatory target genes. The present study has characterized a triazole-containing inducer of NRF2 and elucidated the mechanism by which this molecule activates NRF2 signaling. In a highly selective manner, the compound covalently modifies a critical stress-sensor cysteine (C151) of the E3 ligase substrate adaptor protein Kelch-like ECH-associated protein 1 (KEAP1), the primary negative regulator of NRF2. We further used this inducer to probe the functional consequences of selective activation of NRF2 signaling in Huntington's disease (HD) mouse and human model systems. Surprisingly, we discovered a muted NRF2 activation response in human HD neural stem cells, which was restored by genetic correction of the disease-causing mutation. In contrast, selective activation of NRF2 signaling potently repressed the release of the proinflammatory cytokine IL-6 in primary mouse HD and WT microglia and astrocytes. Moreover, in primary monocytes from HD patients and healthy subjects, NRF2 induction repressed expression of the proinflammatory cytokines IL-1, IL-6, IL-8, and TNFα. Together, our results demonstrate a multifaceted protective potential of NRF2 signaling in key cell types relevant to HD pathology.


Assuntos
Doença de Huntington/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Adulto , Idoso , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Células HEK293 , Humanos , Doença de Huntington/genética , Proteína 1 Associada a ECH Semelhante a Kelch/química , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/prevenção & controle , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/química , Células-Tronco Neurais/metabolismo , Fármacos Neuroprotetores/farmacologia , Conformação Proteica/efeitos dos fármacos , Ratos , Transdução de Sinais
2.
Alcohol ; 107: 56-72, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36038084

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, affecting approximately 50 million people worldwide. Early life risk factors for AD, including prenatal exposures, remain underexplored. Exposure of the fetus to alcohol (ethanol) is not uncommon during pregnancy, and may result in physical, behavioral, and cognitive changes that are first detected during childhood but result in lifelong challenges. Whether or not prenatal ethanol exposure may contribute to Alzheimer's disease risk is not yet known. Here we exposed a mouse model of Alzheimer's disease (3xTg-AD), bearing three dementia-associated transgenes, presenilin1 (PS1M146V), human amyloid precursor protein (APPSwe), and human tau (TauP301S), to ethanol on gestational days 13.5-16.5 using an established binge-type maternal ethanol exposure paradigm. We sought to investigate whether prenatal ethanol exposure resulted in a precocious onset or increased severity of AD progression, or both. We found that a brief binge-type gestational exposure to ethanol during a period of peak neuronal migration to the developing cortex resulted in an earlier onset of spatial memory deficits and behavioral inflexibility in the progeny, as assessed by performance on the modified Barnes maze task. The observed cognitive changes coincided with alterations to both GABAergic and glutamatergic synaptic transmission in layer V/VI neurons, diminished GABAergic interneurons, and increased ß-amyloid accumulation in the medial prefrontal cortex. These findings provide the first preclinical evidence for prenatal ethanol exposure as a potential factor for modifying the onset of AD-like behavioral dysfunction and set the groundwork for more comprehensive investigations into the underpinnings of AD-like cognitive changes in individuals with fetal alcohol spectrum disorders.


Assuntos
Doença de Alzheimer , Cognição , Etanol , Neurônios , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Humanos , Camundongos , Gravidez , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Etanol/toxicidade , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética
3.
PLoS One ; 14(2): e0212337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30768638

RESUMO

One response of cells to growth factor stimulus involves changes in morphology driven by the actin cytoskeleton and actin associated proteins which regulate functions such as cell adhesion, motility and in neurons, synaptic plasticity. Previous studies suggest that Huntingtin may be involved in regulating morphology however, there has been limited evidence linking endogenous Huntingtin localization or function with cytoplasmic actin in cells. We found that depletion of Huntingtin in human fibroblasts reduced adhesion and altered morphology and these phenotypes were made worse with growth factor stimulation, whereas the presence of the Huntington's Disease mutation inhibited growth factor induced changes in morphology and increased numbers of vinculin-positive focal adhesions. Huntingtin immunoreactivity localized to actin stress fibers, vinculin-positive adhesion contacts and membrane ruffles in fibroblasts. Interactome data from others has shown that Huntingtin can associate with α-actinin isoforms which bind actin filaments. Mapping studies using a cDNA encoding α-actinin-2 showed that it interacts within Huntingtin aa 399-969. Double-label immunofluorescence showed Huntingtin and α-actinin-1 co-localized to stress fibers, membrane ruffles and lamellar protrusions in fibroblasts. Proximity ligation assays confirmed a close molecular interaction between Huntingtin and α-actinin-1 in human fibroblasts and neurons. Huntingtin silencing with siRNA in fibroblasts blocked the recruitment of α-actinin-1 to membrane foci. These studies support the idea that Huntingtin is involved in regulating adhesion and actin dependent functions including those involving α-actinin.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinina/metabolismo , Proteína Huntingtina/metabolismo , Citoesqueleto de Actina/química , Adesão Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/patologia , Humanos , Proteína Huntingtina/antagonistas & inibidores , Proteína Huntingtina/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Microscopia Confocal , Neurônios/metabolismo , Neurônios/patologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
4.
J Huntingtons Dis ; 8(1): 53-69, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30594931

RESUMO

BACKGROUND: Previous studies suggest that Huntingtin, the protein mutated in Huntington's disease (HD), is required for actin based changes in cell morphology, and undergoes stimulus induced targeting to plasma membranes where it interacts with phospholipids involved in cell signaling. The small GTPase Rac1 is a downstream target of growth factor stimulation and PI 3-kinase activity and is critical for actin dependent membrane remodeling. OBJECTIVE: To determine if Rac1 activity is impaired in HD or regulated by normal Huntingtin. METHODS: Analyses were performed in differentiated control and HD human stem cells and HD Q140/Q140 knock-in mice. Biochemical methods included SDS-PAGE, western blot, immunoprecipitation, affinity chromatography, and ELISA based Rac activity assays. RESULTS: Basal Rac1 activity increased following depletion of Huntingtin with Huntingtin specific siRNA in human primary fibroblasts and in human control neuron cultures. Human cells (fibroblasts, neural stem cells, and neurons) with the HD mutation failed to increase Rac1 activity in response to growth factors. Rac1 activity levels were elevated in striatum of 1.5-month-old HD Q140/Q140 mice and in primary embryonic cortical neurons from HD mice. Affinity chromatography analysis of striatal lysates showed that Huntingtin is in a complex with Rac1, p85α subunit of PI 3-kinase, and the actin bundling protein α-actinin and interacts preferentially with the GTP bound form of Rac1. The HD mutation reduced Huntingtin interaction with p85α. CONCLUSIONS: These findings suggest that Huntingtin regulates Rac1 activity as part of a coordinated response to growth factor signaling and this function is impaired early in HD.


Assuntos
Doença de Huntington/genética , Mutação/genética , Neuropeptídeos/genética , Proteínas rac1 de Ligação ao GTP/genética , Animais , Diferenciação Celular , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Camundongos , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Transdução de Sinais/genética
5.
Sci Rep ; 8(1): 11355, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054496

RESUMO

The Hippo signaling pathway is involved in organ size regulation and tumor suppression. Although inhibition of Hippo leads to tumorigenesis, activation of Hippo may play a role in neurodegeneration. Specifically, activation of the upstream regulator, mammalian sterile 20 (STE20)-like kinase 1 (MST1), reduces activity of the transcriptional co-activator Yes-Associated Protein (YAP), thereby mediating oxidative stress-induced neuronal death. Here, we investigated the possible role of this pathway in Huntington's disease (HD) pathogenesis. Our results demonstrate a significant increase in phosphorylated MST1, the active form, in post-mortem HD cortex and in the brains of CAG knock-in HdhQ111/Q111 mice. YAP nuclear localization was also decreased in HD post-mortem cortex and in neuronal stem cells derived from HD patients. Moreover, there was a significant increase in phosphorylated YAP, the inactive form, in HD post-mortem cortex and in HdhQ111/Q111 brain. In addition, YAP was found to interact with huntingtin (Htt) and the chaperone 14-3-3, however this interaction was not altered in the presence of mutant Htt. Lastly, YAP/TEAD interactions and expression of Hippo pathway genes were altered in HD. Together, these results demonstrate that activation of MST1 together with a decrease in nuclear YAP could significantly contribute to transcriptional dysregulation in HD.


Assuntos
Encéfalo/patologia , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Células-Tronco Neurais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas 14-3-3/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Via de Sinalização Hippo , Humanos , Células-Tronco Neurais/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição , Transcrição Gênica , Proteínas de Sinalização YAP
6.
J Huntingtons Dis ; 5(2): 99-131, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27372054

RESUMO

Induced pluripotent stem cells (iPSCs) derived from controls and patients can act as a starting point for in vitro differentiation into human brain cells for discovery of novel targets and treatments for human disease without the same ethical limitations posed by embryonic stem cells. Numerous groups have successfully produced and characterized Huntington's disease (HD) iPSCs with different CAG repeat lengths, including cells from patients with one or two HD alleles. HD iPSCs and the neural cell types derived from them recapitulate some disease phenotypes found in both human patients and animal models. Although these discoveries are encouraging, the use of iPSCs for cutting edge and reproducible research has been limited due to some of the inherent problems with cell lines and the technological differences in the way laboratories use them. The goal of this review is to summarize the current state of the HD iPSC field, and to highlight some of the issues that need to be addressed to maximize their potential as research tools.


Assuntos
Pesquisa Biomédica , Proteína Huntingtina/metabolismo , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/terapia
7.
J Huntingtons Dis ; 5(3): 249-260, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689619

RESUMO

BACKGROUND: Mutant huntingtin (mHTT) is encoded by the Huntington's disease (HD) gene and its accumulation in the brain contributes to HD pathogenesis. Reducing mHTT levels through activation of the autophagosome-lysosomal pathway may have therapeutic benefit. Transcription factor EB (TFEB) regulates lysosome biogenesis and autophagy. OBJECTIVE: To examine if increasing TFEB protein levels in HD mouse striatum induces autophagy and influences mHTT levels. METHODS: We introduced cDNA encoding TFEB with an HA tag (TFEB-HA) under the control of neuron specific synapsin 1 promoter into the striatum of 3 month old HDQ175/Q7 mice using adeno-associated virus AAV2/9. The levels of exogenous TFEB were analyzed using qPCR and Western blot. Proteins involved in autophagy, levels of huntingtin, and striatal-enriched proteins were examined using biochemical and/or immunohistochemical methods. RESULTS: In HD mice expressing TFEB-HA, HA immunoreactivity distributed throughout the striatum in neuronal cell bodies and processes and preferentially in neuronal nuclei and overlapped with a loss of DARPP32 immunoreactivity. TFEB-HA mRNA and protein were detected in striatal lysates. There were increased levels of proteins involved with autophagosome/lysosome activity including LAMP-2A, LC3II, and cathepsin D and reduced levels of mutant HTT and the striatal enriched proteins DARPP32 and PDE10A. Compared to WT mice, HDQ175/Q7 mice had elevated levels of the ER stress protein GRP78/BiP and with TFEB-HA expression, increased levels of the astrocyte marker GFAP and pro-caspase 3. CONCLUSION: These results suggest that TFEB expression in the striatum of HDQ175/Q7 mice stimulates autophagy and lysosome activity, and lowers mHTT, but may also increase a neuronal stress response.


Assuntos
Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Corpo Estriado/metabolismo , Doença de Huntington/patologia , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Catepsina D/metabolismo , Contagem de Células , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Chaperona BiP do Retículo Endoplasmático , Regulação da Expressão Gênica/genética , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Proteína Huntingtina/genética , Doença de Huntington/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
8.
J Huntingtons Dis ; 4(2): 187-201, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26397899

RESUMO

BACKGROUND: Huntington's disease (HD) is a neurodegenerative disease caused by a CAG expansion in the HD gene, which encodes the protein Huntingtin. Huntingtin associates with membranes and can interact directly with glycerophospholipids in membranes. OBJECTIVE: We analyzed glycerophospholipid profiles from brains of 11 month old wild-type (WT) and Q140/Q140 HD knock-in mice to assess potential changes in glycerophospholipid metabolism. METHODS: Polar lipids from cerebellum, cortex, and striatum were extracted and analyzed by liquid chromatography and negative ion electrospray tandem mass spectrometry analysis (LC-MS/MS). Gene products involved in polar lipid metabolism were studied using western blotting, immuno-electron microscopy and qPCR. RESULTS: Significant changes in numerous species of glycerophosphate (phosphatidic acid, PA) were found in striatum, cerebellum and cortex from Q140/Q140 HD mice compared to WT mice at 11 months. Changes in specific species could also be detected for other glycerophospholipids. Increases in species of lyso-PA (LPA) were measured in striatum of Q140/Q140 HD mice compared to WT. Protein levels for c-terminal binding protein 1 (CtBP1), a regulator of PA biosynthesis, were reduced in striatal synaptosomes from HD mice compared to wild-type at 6 and 12 months. Immunoreactivity for CtBP1 was detected on membranes of synaptic vesicles in striatal axon terminals in the globus pallidus. CONCLUSIONS: These novel results identify a potential site of molecular pathology caused by mutant Huntingtin that may impart early changes in HD.


Assuntos
Encéfalo/metabolismo , Glicerofosfolipídeos/metabolismo , Doença de Huntington/metabolismo , Lisofosfolipídeos/metabolismo , Ácidos Fosfatídicos/metabolismo , Oxirredutases do Álcool/metabolismo , Animais , Encéfalo/ultraestrutura , Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/ultraestrutura , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Técnicas de Introdução de Genes , Proteína Huntingtina , Doença de Huntington/genética , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA