Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 27(22): 31840-31849, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31684408

RESUMO

We demonstrate the generation of high-quality tunable terahertz (THz) vortices in an eigenmode by employing soft-aperture difference frequency generation of vortex and Gaussian modes. The generated THz vortex output exhibits a high-quality orbital angular momentum (OAM) mode with a topological charge of ℓTHz = ±1 in a frequency range of 2-6 THz. The maximum average power of the THz vortex output obtained was ∼3.3 µW at 4 THz.

2.
Opt Express ; 27(26): 38019-38027, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878573

RESUMO

The orbital angular momentum of an optical vortex field is found to twist high viscosity donor material to form a micron-scale 'spin jet'. This unique phenomenon manifests the helical trajectory of the optical vortex. Going beyond both the conventional ink jet and laser induced forward mass transfer (LIFT) patterning technologies, it also offers the formation and ejection of a micron-scale 'spin jet' of the donor material even with an ultrahigh viscosity of 4 Pa·s. This optical vortex laser induced forward mass transfer (OV-LIFT) patterning technique will enable the development of next generation printed photonic/electric/spintronic circuits formed of ultrahigh viscosity donor dots containing functional nanoparticles, such as quantum dots, metallic particles and magnetic ferrite particles, with ultrahigh spatial resolution. It can also potentially explore a completely new needleless drug injection.

3.
Phys Rev Lett ; 110(14): 143603, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25166987

RESUMO

We discovered that chiral nanoneedles fabricated by vortex laser ablation can be used to visualize the helicity of an optical vortex. The orbital angular momentum of light determines the chirality of the nanoneedles, since it is transferred from the optical vortex to the metal. Only the spin angular momentum of the optical vortex can reinforce the helical structure of the created chiral nanoneedles. We also found that optical vortices with the same total angular momentum (defined as the sum of the orbital and spin angular momenta) are degenerate, and they generate nanoneedles with the same chirality and spiral frequency.

4.
Nano Lett ; 12(7): 3645-9, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22690654

RESUMO

We discovered for the first time that light can twist metal to control the chirality of metal nanostructures (hereafter, chiral metal nanoneedles). The helicity of optical vortices is transferred to the constituent elements of the irradiated material (mostly melted material), resulting in the formation of chiral metal nanoneedles. The chirality of these nanoneedles could be controlled by just changing the sign of the helicity of the optical vortex. The tip curvature of these chiral nanoneedles was measured to be <40 nm, which is less than 1/25th of the laser wavelength (1064 nm). Such chiral metal nanoneedles will enable us to selectively distinguish the chirality and optical activity of molecules and chemical composites on a nanoscale and they will provide chiral selectivity for nanoscale imaging systems (e.g., atomic force microscopes), chemical reactions on plasmonic nanostructures, and planar metamaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA