Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511511

RESUMO

Infections caused by Carbapenem-resistant Acinetobacter baumannii (CRAB) isolates, such as hospital-acquired pneumonia (HAP), bacteremia, and skin and soft tissue infections, among others, are particularly challenging to treat. Cefiderocol, a chlorocatechol-substituted siderophore antibiotic, was approved by the U.S. Food and Drug Administration (FDA) in 2019 and prescribed for the treatment of CRAB infections. Despite the initial positive treatment outcomes with this antimicrobial, recent studies reported a higher-than-average all-cause mortality rate in patients treated with cefiderocol compared to the best available therapy. The cause(s) behind these outcomes remains unconfirmed. A plausible hypothesis is heteroresistance, a phenotype characterized by the survival of a small proportion of cells in a population that is seemingly isogenic. Recent results have demonstrated that the addition of human fluids to CRAB cultures leads to cefiderocol heteroresistance. Here, we describe the molecular and phenotypic analyses of CRAB heteroresistant bacterial subpopulations to better understand the nature of the less-than-expected successful outcomes after cefiderocol treatment. Isolation of heteroresistant variants of the CRAB strain AMA40 was carried out in cultures supplemented with cefiderocol and human pleural fluid (HPF). Two AMA40 variants, AMA40 IHC1 and IHC2, were resistant to cefiderocol. To identify mutations and gene expression changes associated with cefiderocol heteroresistance, we subjected these variants to whole genome sequencing and global transcriptional analysis. We then assessed the impact of these mutations on the pharmacodynamic activity of cefiderocol via susceptibility testing, EDTA and boronic acid inhibition analysis, biofilm formation, and static time-kill assays. Heteroresistant variants AMA40 IHC1 and AMA40 IHC2 have 53 chromosomal mutations, of which 40 are common to both strains. None of the mutations occurred in genes associated with high affinity iron-uptake systems or ß-lactam resistance. However, transcriptional analyses demonstrated significant modifications in levels of expression of genes associated with iron-uptake systems or ß-lactam resistance. The blaNDM-1 and blaADC-2, as well as various iron-uptake system genes, were expressed at higher levels than the parental strain. On the other hand, the carO and ompA genes' expression was reduced. One of the mutations common to both heteroresistant strains was mapped within ppiA, a gene associated with iron homeostasis in other species. Static time-kill assays demonstrated that supplementing cation-adjusted Mueller-Hinton broth with human serum albumin (HAS), the main protein component of HPF, considerably reduced cefiderocol killing activity for all three strains tested. Notably, collateral resistance to amikacin was observed in both variants. We conclude that exposing CRAB to fluids with high HSA concentrations facilitates the rise of heteroresistance associated with point mutations and transcriptional upregulation of genes coding for ß-lactamases and biofilm formation. The findings from this study hold significant implications for understanding the emergence of CRAB resistance mechanisms against cefiderocol treatment. This understanding is vital for the development of treatment guidelines that can effectively address the challenges posed by CRAB infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , beta-Lactamases/genética , Ferro/farmacologia , Cefiderocol
2.
Antimicrob Agents Chemother ; 65(10): e0101921, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34280015

RESUMO

Acinetobacter baumannii A118, a carbapenem-susceptible strain, and AB5075, carbapenem resistant, were cultured in lysogeny broth (LB) or LB with different supplements, such as 3.5% human serum albumin (HSA), human serum (HS), meropenem, or meropenem plus 3.5% HSA. Natural transformation levels were enhanced in A. baumannii A118 and AB5075 cultured in medium supplemented with 3.5% HSA. Addition of meropenem plus 3.5% HSA caused synergistic enhancement of natural transformation in A. baumannii A118. Medium containing 3.5% HSA or meropenem enhanced the expression levels of the competence and type IV pilus-associated genes. The combination meropenem plus 3.5% HSA produced a synergistic enhancement in the expression levels of many of these genes. The addition of HS, which has a high content of HSA, was also an inducer of these genes. Cultures in medium supplemented with HS or 3.5% HSA also affected resistance genes, which were expressed at higher or lower levels depending on the modification required to enhance resistance. The inducing or repressing activity of these modulators also occurred in three more carbapenem-resistant strains tested. An exception was the A. baumannii AMA16 blaNDM-1 gene, which was repressed in the presence of 3.5% HSA. In conclusion, HSA produces an enhancement of natural transformation and a modification in expression levels of competence genes and antibiotic resistance. Furthermore, when HSA is combined with carbapenems, which may increase the stress response, the expression of genes involved in natural competence is increased in A. baumannii. This process may favor the acquisition of foreign DNA and accelerate evolution.


Assuntos
Acinetobacter baumannii , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Humanos , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Albumina Sérica Humana
3.
Artigo em Inglês | MEDLINE | ID: mdl-32122888

RESUMO

A 4-year surveillance of carbapenem-resistant Acinetobacter spp. isolates in Argentina identified 40 strains carrying blaNDM-1 Genome sequencing revealed that most were Acinetobacter baumannii, whereas seven represented other Acinetobacter spp. The A. baumannii genomes were closely related, suggesting recent spread. blaNDM-1 was located in the chromosome of A. baumannii strains and on a plasmid in non-A. baumannii strains. A resistance gene island carrying blaPER-7 and other resistance determinants was found on a plasmid in some A. baumannii strains.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , beta-Lactamases/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/isolamento & purificação , Argentina , Genoma Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos/genética
4.
Curr Microbiol ; 77(12): 4029-4036, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33048176

RESUMO

In the last years, an increasing number of untreatable infections caused by drug-resistant microbes have impacted the health care system. Worldwide, infections caused by carbapenem-resistant (CR) Gram-negative bacilli have dramatically increased. Among the CR-Gram-negative bacilli, those producing carbapenemases, such as NDM-1, are the main concern. Different Enterobacterales harboring NDM-1 have been reported lately. Providencia stuartii, a member of the Morganellaceae family, is ubiquitous in the environment, but is also known to cause nosocomial infections. Here we describe the genomic analysis of two NDM-1- producing P. stuartii strains recovered from the same patient as well as other carbapenem resistant strains recovered from the same hospital. As a result of the genomic analysis thirteen resistance genes, including three to ß-lactams (blaOXA-1, blaTEM-1, blaNDM-1), four to aminoglycosides (aphA6, aac(3)-IId, aac(2')-Ia, aac(6')-Ib-cr5), one to sulfonamides (sul1), two to chloramphenicol (catB3, catA3), one to rifampicin, one to bleomycin (ble), and one to tetracycline (tet(B)) were found. Moreover, a variety of mobile genetic elements, such as insertion sequences, plasmids and phage- related sequences, were found within P. stuartii genomes. The spread of carbapenem-resistant isolates remains a significant clinical and public health concern. Therefore, we considered that the detection of CR isolates is an essential step in addressing this problem.


Assuntos
Providencia , beta-Lactamases , Antibacterianos/farmacologia , Genômica , Humanos , Testes de Sensibilidade Microbiana , Plasmídeos , Providencia/genética , beta-Lactamases/genética
5.
Rev Argent Microbiol ; 52(1): 13-18, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31253503

RESUMO

Different phenotype-based techniques and molecular tools were used to describe the distribution of different Achromobacter species in patients with cystic fibrosis (CF) in Argentina, and to evaluate their antibiotic resistance profile. Phenotypic identification was performed by conventional biochemical tests, commercial galleries and MALDI-TOF MS. Genetic approaches included the detection of A. xylosoxidans specific marker blaoxa-114, the amplification and sequencing of the 16S rRNA gene, nrdA and blaOXA complete sequence, and MLST analysis. Phenotypic approaches, even MALDI-TOF, rendered inconclusive or misleading results. On the contrary, concordant results were achieved with the nrdA sequencing or sequence type (ST) analysis, and the complete blaOXA sequencing, allowing a reliable discrimination of different Achromobacter species. A. xylosoxidans accounted for 63% of Achromobacter infections and A. ruhlandii accounted for 17%. The remaining species corresponded to A. insuavis, A. dolens, A. marplatensis and A. pulmonis. Antimicrobial susceptibilities were determined by the agar dilution method according to CLSI guidelines. Piperacillin, piperacillin/tazobactam and carbapenems were the most active antibiotics. However, the emergence of carbapenem-resistant isolates was detected. In conclusion, prompt and accurate identification tools were necessary to determine that different Achromobacter species may colonize/infect the airways of patients with CF. Moreover, antimicrobial therapy should be administered based on the susceptibility profile of individual Achromobacter sp. isolates.


Assuntos
Achromobacter/isolamento & purificação , Fibrose Cística/microbiologia , Achromobacter/classificação , Achromobacter/efeitos dos fármacos , Achromobacter/genética , Antibacterianos/farmacologia , Argentina , Farmacorresistência Bacteriana , Humanos , Fenótipo
6.
Curr Microbiol ; 76(8): 950-953, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29332139

RESUMO

Our previous data show that serum albumin can trigger natural transformation in Acinetobacter baumannii. However, extracellular matrix/basal membrane components, norepinephrine, and mucin did not have a significant effect on this process. Therefore, the effect of human products appears to be albumin specific, as both BSA and HSA have been shown to increase of natural transformation.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Competência de Transformação por DNA/efeitos dos fármacos , Albumina Sérica Humana/metabolismo , Transformação Bacteriana/efeitos dos fármacos , Humanos
7.
Curr Microbiol ; 75(8): 1084-1089, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29687150

RESUMO

The spread of antibiotic resistance is rapidly threatening the effectiveness of antibiotics in the clinical setting. Many infections are being caused by known and unknown pathogenic bacteria that are resistant to many or all antibiotics currently available. Empedobacter falsenii is a nosocomial pathogen that can cause human infections. E. falsenii Wf282 strain was found to be resistant to many antibiotics, including carbapenems and colistin. Whole-genome shotgun sequencing of the strain was performed, and distinct features were identified. A novel metallo-ß-lactamase, named EBR-2, was found, suggesting a potential role of E. falsenii as a reservoir of ß-lactamases and other resistance determinants also found in its genome. The EBR-2 protein showed the highest catalytic efficiency for penicillin G as compared to meropenem and ampicillin and was unable to hydrolyze cefepime. The results described in this work broaden the current understanding of the role of ß-lactamases in the Flavobacteriaceae family and suggest that E. falsenii Wf282 may be a reservoir of these novel resistance determinants.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Flavobacteriaceae , beta-Lactamases/genética , Sequência de Aminoácidos , Ampicilina/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Cefepima , Cefalosporinas/metabolismo , Infecção Hospitalar/microbiologia , Flavobacteriaceae/efeitos dos fármacos , Flavobacteriaceae/genética , Flavobacteriaceae/metabolismo , Genoma Bacteriano/genética , Humanos , Meropeném , Testes de Sensibilidade Microbiana , Penicilina G/metabolismo , Tienamicinas/metabolismo
8.
Antimicrob Agents Chemother ; 60(8): 4920-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27270286

RESUMO

The increasing frequency of bacteria showing antimicrobial resistance (AMR) raises the menace of entering into a postantibiotic era. Horizontal gene transfer (HGT) is one of the prime reasons for AMR acquisition. Acinetobacter baumannii is a nosocomial pathogen with outstanding abilities to survive in the hospital environment and to acquire resistance determinants. Its capacity to incorporate exogenous DNA is a major source of AMR genes; however, few studies have addressed this subject. The transformation machinery as well as the factors that induce natural competence in A. baumannii are unknown. In this study, we demonstrate that naturally competent strain A118 increases its natural transformation frequency upon the addition of Ca(2+)or albumin. We show that comEA and pilQ are involved in this process since their expression levels are increased upon the addition of these compounds. An unspecific protein, like casein, does not reproduce this effect, showing that albumin's effect is specific. Our work describes the first specific inducers of natural competence in A. baumannii Overall, our results suggest that the main protein in blood enhances HGT in A. baumannii, contributing to the increase of AMR in this threatening human pathogen.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Cálcio/farmacologia , Infecção Hospitalar/microbiologia , Competência de Transformação por DNA/efeitos dos fármacos , Albumina Sérica/farmacologia , DNA/genética , Competência de Transformação por DNA/genética , Farmacorresistência Bacteriana/genética , Transferência Genética Horizontal/efeitos dos fármacos , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Humanos
9.
J Clin Microbiol ; 53(1): 349-51, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25392359

RESUMO

A taxonomically unique bacterial strain, Acinetobacter sp. A47, has been recovered from several soft tissue samples from a patient undergoing reconstructive surgery owing to a traumatic amputation. The results of 16S rRNA, rpoB, and gyrB gene comparative sequence analyses showed that A47 does not belong to any of the hitherto-known taxa and may represent an as-yet-unknown Acinetobacter species. The recognition of this novel organism contributes to our knowledge of the taxonomic complexity underlying infections caused by Acinetobacter.


Assuntos
Infecções por Acinetobacter , Acinetobacter/genética , Lesões dos Tecidos Moles , Acinetobacter/classificação , Acinetobacter/fisiologia , Infecções por Acinetobacter/diagnóstico , Infecções por Acinetobacter/microbiologia , DNA Bacteriano/análise , DNA Bacteriano/genética , Feminino , Genes Bacterianos/genética , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Fenótipo , Lesões dos Tecidos Moles/diagnóstico , Lesões dos Tecidos Moles/microbiologia
10.
Curr Microbiol ; 69(4): 501-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24894902

RESUMO

The accurate species identification of Achromobacter isolates is difficult and the clinical isolates of this genus are mostly referred as A. xylosoxidans. Here, we report new OXA variants in 2 isolates identified as A. insuavis (A114, A79) and 1 isolate identified as A. dolens (A336). These results suggest that different bla OXA genes are ubiquitous in the different species of Achromobacter spp. The role of the other species of Achromobacter in clinical samples needs to be reevaluated, and the proper identification is absolutely necessary to understand the epidemiology of this genus.


Assuntos
Achromobacter denitrificans/enzimologia , Achromobacter/enzimologia , Proteínas de Bactérias/genética , Fibrose Cística/microbiologia , Infecções por Bactérias Gram-Negativas/microbiologia , beta-Lactamases/genética , Achromobacter/efeitos dos fármacos , Achromobacter/genética , Achromobacter/isolamento & purificação , Achromobacter denitrificans/efeitos dos fármacos , Achromobacter denitrificans/genética , Achromobacter denitrificans/isolamento & purificação , Sequência de Aminoácidos , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , beta-Lactamases/química , beta-Lactamases/metabolismo
11.
Front Microbiol ; 15: 1357881, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903793

RESUMO

Salmonella enterica serovar Derby causes foodborne disease (FBD) outbreaks worldwide, mainly from contaminated pork but also from chickens. During a major epidemic of FBD in Uruguay due to S. enteritidis from poultry, we conducted a large survey of commercially available eggs, where we isolated many S. enteritidis strains but surprisingly also a much larger number (ratio 5:1) of S. Derby strains. No single case of S. Derby infection was detected in that period, suggesting that the S. Derby egg strains were impaired for human infection. We sequenced fourteen of these egg isolates, as well as fifteen isolates from pork or human infection that were isolated in Uruguay before and after that period, and all sequenced strains had the same sequence type (ST40). Phylogenomic analysis was conducted using more than 3,500 genomes from the same sequence type (ST), revealing that Uruguayan isolates clustered into four distantly related lineages. Population structure analysis (BAPS) suggested the division of the analyzed genomes into nine different BAPS1 groups, with Uruguayan strains clustering within four of them. All egg isolates clustered together as a monophyletic group and showed differences in gene content with the strains in the other clusters. Differences included variations in the composition of mobile genetic elements, such as plasmids, insertion sequences, transposons, and phages, between egg isolates and human/pork isolates. Egg isolates showed an acid susceptibility phenotype, reduced ability to reach the intestine after oral inoculation of mice, and reduced induction of SPI-2 ssaG gene, compared to human isolates from other monophyletic groups. Mice challenge experiments showed that mice infected intraperitoneally with human/pork isolates died between 1-7 days p.i., while all animals infected with the egg strain survived the challenge. Altogether, our results suggest that loss of genes functions, the insertion of phages and the absence of plasmids in egg isolates may explain why these S. Derby were not capable of producing human infection despite being at that time, the main serovar recovered from eggs countrywide.

12.
Diagn Microbiol Infect Dis ; 110(2): 116476, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39111106

RESUMO

We present a case of a 34-year-old patient with abdominal sepsis caused by an infrequent species: Chimaeribacter arupi. Genomic analysis confirmed the identification which is difficult to achieve by other methods so far. To our knowledge, this represents the first case of infection by this species reported in Argentina.


Assuntos
Sepse , Humanos , Adulto , Sepse/microbiologia , Sepse/diagnóstico , Masculino , Argentina , RNA Ribossômico 16S/genética , Filogenia , Antibacterianos/uso terapêutico , DNA Bacteriano/genética , Infecções por Fusobacteriaceae/microbiologia , Infecções por Fusobacteriaceae/diagnóstico , Análise de Sequência de DNA
13.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496545

RESUMO

The emergence of Gram-negative bacteria resistant to multiple antibiotics, particularly carbapenem-resistant (CR) Acinetobacter strains, poses a significant threat globally. Despite efforts to develop new antimicrobial therapies, limited progress has been made, with only two drugs-cefiderocol and sulbactam-durlobactam-showing promise for CR-Acinetobacter infections. Cefiderocol, a siderophore cephalosporin, demonstrates promising efficacy in the treatment of Gram-negative infections. However, resistance to cefiderocol has been reported in A. baumannii. Combination therapies, such as cefiderocol with avibactam or sulbactam, show reduced MICs against cefiderocol-non-susceptible strains with in vivo efficacy, although the outcomes can be complex and species-specific. In the present work, the molecular characterization of spontaneous cefiderocol-resistant variants, a CRAB strain displaying antagonism with sulbactam and an A. lwoffii strain showing antagonism with avibactam, were studied. The results reveal intriguing insights into the underlying mechanisms, including mutations affecting efflux pumps, transcriptional regulators, and iron homeostasis genes. Moreover, gene expression analysis reveals significant alterations in outer membrane proteins, iron homeostasis, and ß-lactamases, suggesting adaptive responses to selective pressure. Understanding these mechanisms is crucial for optimizing treatment strategies and preventing adverse clinical outcomes. This study highlights the importance of preemptively assessing drug synergies to navigate the challenges posed by antimicrobial resistance in CR-Acinetobacter infections.

14.
Microbiol Spectr ; : e0093024, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162493

RESUMO

Cefiderocol, a siderophore-cephalosporine conjugate antibiotic, shows promise as a therapeutic option for carbapenem-resistant (CR) Acinetobacter infections. While resistance has already been reported in A. baumannii, combination therapies with avibactam or sulbactam reduce MICs of cefiderocol, extending its efficacy. However, careful consideration is necessary when using these combinations. In our experiments, exposure of A. baumannii and A. lwoffii to cefiderocol and sulbactam or avibactam led to the selection of cefiderocol-resistant strains. Three of those were subjected to whole genome sequencing and transcriptomic analysis. The strains all possessed synonymous and non-synonymous substitutions and short deletions. The most significant mutations affected efflux pumps, transcriptional regulators, and iron homeostasis genes. Transcriptomics showed significant alterations in expression levels of outer membrane proteins, iron homeostasis, and ß-lactamases, suggesting adaptive responses to selective pressure. This study underscores the importance of carefully assessing drug synergies, as they may inadvertently foster the selection of resistant variants and complicate the management of CR Acinetobacter infections.IMPORTANCEThe emergence of carbapenem-resistant Acinetobacter strains as a serious global health threat underscores the urgent need for effective treatment options. Although few drugs show promise against CR Acinetobacter infections, resistance to both drugs has been reported. In this study, the molecular characterization of spontaneous cefiderocol-resistant variants, a CR A. baumannii strain with antagonism to sulbactam, and an A. lwoffii strain with antagonism to avibactam, provides valuable insights into the mechanisms of resistance to cefiderocol. Some mechanisms observed are associated with mutations affecting efflux pumps, regulators, and iron homeostasis genes. These findings highlight the importance of understanding resistance mechanisms to optimize treatment options. They also emphasize the importance of early evaluation of drug synergies to address the challenges of antimicrobial resistance in Acinetobacter infections.

15.
Microbiol Resour Announc ; 13(1): e0089223, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38019022

RESUMO

We report here a draft genome assembly of Lacticaseibacillus rhamnosus CRL 2244, recovered from wastewater in Argentina. The genome has a size of 2,898,100 bp, with G + C content of 46.73%. Comparative analysis reveals that its closest relative is L. rhamnosus 1.0320 (GCF_006151905.1), with an average nucleotide identity of 97.46%.

16.
Infect Prev Pract ; 6(3): 100379, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39006243

RESUMO

Members of the genus Phytobacter (order Enterobacterales) are isolated from the natural environment and clinical settings. Identification of Phytobacter strains based on biochemical characteristics is complicated due to taxonomic confusion, and they are often misidentified by automated identification systems in laboratories. In this study we describe the first three clinical cases associated with Phytobacter spp. reported in Argentina. We describe the identification, the molecular analysis using whole genome sequencing and the potential clinical relevance.

17.
Sci Rep ; 14(1): 19145, 2024 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160175

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major human pathogen and a research priority for developing new antimicrobial agents. CRAB is a causative agent of a variety of infections in different body sites. One of the manifestations is catheter-associated urinary tract infection, which exposes the bacteria to the host's urine, creating a particular environment. Exposure of two CRAB clinical isolates, AB5075 and AMA40, to human urine (HU) resulted in the differential expression levels of 264 and 455 genes, respectively, of which 112 were common to both strains. Genes within this group play roles in metabolic pathways such as phenylacetic acid (PAA) catabolism, the Hut system, the tricarboxylic acid (TCA) cycle, and other processes like quorum sensing and biofilm formation. These results indicate that the presence of HU induces numerous adaptive changes in gene expression of the infecting bacteria. These changes presumably help bacteria establish and thrive in the hostile conditions in the urinary tract. These analyses advance our understanding of CRAB's metabolic adaptations to human fluids, as well as expand knowledge on bacterial responses to distinct human fluids containing different concentrations of human serum albumin (HSA).


Assuntos
Acinetobacter baumannii , Carbapenêmicos , Urina , Acinetobacter baumannii/genética , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/metabolismo , Humanos , Carbapenêmicos/farmacologia , Urina/microbiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Antibacterianos/farmacologia , Infecções por Acinetobacter/microbiologia , Infecções por Acinetobacter/urina , Adaptação Fisiológica/genética , Infecções Urinárias/microbiologia , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/genética
18.
Res Sq ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38853891

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major human pathogen and a research priority for developing new antimicrobial agents. CRAB is a causative agent of a variety of infections in different body sites. One of the manifestations is catheter-associated urinary tract infection, which exposes the bacteria to the host's urine, creating a particular environment. Exposure of two CRAB clinical isolates, AB5075 and AMA40, to human urine (HU) resulted in the differential expression levels of 264 and 455 genes, respectively, of which 112 were common to both strains. Genes within this group play roles in metabolic pathways such as phenylacetic acid (PAA) catabolism, the Hut system, the tricarboxylic acid (TCA) cycle, and other processes like quorum sensing and biofilm formation. These results indicate that the presence of HU induces numerous adaptive changes in gene expression of the infecting bacteria. These modifications presumably help bacteria establish and thrive in the hostile conditions in the urinary tract. These analyses advance our understanding of CRAB's metabolic adaptations to human fluids, as well as expanding knowledge on bacterial responses to distinct human fluids containing different concentrations of human serum albumin (HSA).

19.
Antimicrob Agents Chemother ; 57(1): 651-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23147737

RESUMO

Resistance to minocycline has emerged in multidrug-resistant Acinetobacter baumannii isolates from Buenos Aires hospitals. Few reports about the description and dispersion of tet genes in this species have been published. We observed the presence of tet(B) in all minocycline-resistant isolates. This gene was found to be associated with the ISCR2 mobile element, which may, in part, explain its dispersion.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Antibacterianos/uso terapêutico , Minociclina/uso terapêutico , Plasmídeos , Resistência a Tetraciclina/genética , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Argentina/epidemiologia , Sequência de Bases , Humanos , Testes de Sensibilidade Microbiana , Minociclina/farmacologia , Dados de Sequência Molecular , Retroelementos , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA