Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(4): 700-713, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807640

RESUMO

Non-neuronal cells are key to the complex cellular interplay that follows central nervous system insult. To understand this interplay, we generated a single-cell atlas of immune, glial and retinal pigment epithelial cells from adult mouse retina before and at multiple time points after axonal transection. We identified rare subsets in naive retina, including interferon (IFN)-response glia and border-associated macrophages, and delineated injury-induced changes in cell composition, expression programs and interactions. Computational analysis charted a three-phase multicellular inflammatory cascade after injury. In the early phase, retinal macroglia and microglia were reactivated, providing chemotactic signals concurrent with infiltration of CCR2+ monocytes from the circulation. These cells differentiated into macrophages in the intermediate phase, while an IFN-response program, likely driven by microglia-derived type I IFN, was activated across resident glia. The late phase indicated inflammatory resolution. Our findings provide a framework to decipher cellular circuitry, spatial relationships and molecular interactions following tissue injury.


Assuntos
Macrófagos , Retina , Animais , Camundongos , Retina/lesões , Retina/metabolismo , Microglia , Sistema Nervoso Central , Monócitos
2.
Cell ; 166(5): 1308-1323.e30, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565351

RESUMO

Patterns of gene expression can be used to characterize and classify neuronal types. It is challenging, however, to generate taxonomies that fulfill the essential criteria of being comprehensive, harmonizing with conventional classification schemes, and lacking superfluous subdivisions of genuine types. To address these challenges, we used massively parallel single-cell RNA profiling and optimized computational methods on a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). From a population of ∼25,000 BCs, we derived a molecular classification that identified 15 types, including all types observed previously and two novel types, one of which has a non-canonical morphology and position. We validated the classification scheme and identified dozens of novel markers using methods that match molecular expression to cell morphology. This work provides a systematic methodology for achieving comprehensive molecular classification of neurons, identifies novel neuronal types, and uncovers transcriptional differences that distinguish types within a class.


Assuntos
Células Bipolares da Retina/classificação , Transcriptoma , Células Amácrinas/citologia , Animais , Análise por Conglomerados , Feminino , Marcadores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Análise de Sequência de RNA , Análise de Célula Única/métodos , Transcrição Gênica
3.
J Synchrotron Radiat ; 30(Pt 3): 605-612, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37026392

RESUMO

The discovery of a new physical process in manganese metal is reported. This process will also be present for all manganese-containing materials in condensed matter. The process was discovered by applying our new technique of XR-HERFD (extended-range high-energy-resolution fluorescence detection), which was developed from the popular high-resolution RIXS (resonant inelastic X-ray scattering) and HERFD approaches. The acquired data are accurate to many hundreds of standard deviations beyond what is regarded as the criterion for `discovery'. Identification and characterization of many-body processes can shed light on the X-ray absorption fine-structure spectra and inform the scientist on how to interpret them, hence leading to the ability to measure the dynamical nanostructures which are observable using the XR-HERFD method. Although the many-body reduction factor has been used universally in X-ray absorption spectroscopy in analysis over the past 30 years (thousands of papers per year), this experimental result proves that many-body effects are not representable by any constant reduction factor parameter. This paradigm change will provide the foundation for many future studies and X-ray spectroscopy.

4.
J Neurosci ; 40(27): 5177-5195, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32457074

RESUMO

Amacrine cells (ACs) are a diverse class of interneurons that modulate input from photoreceptors to retinal ganglion cells (RGCs), rendering each RGC type selectively sensitive to particular visual features, which are then relayed to the brain. While many AC types have been identified morphologically and physiologically, they have not been comprehensively classified or molecularly characterized. We used high-throughput single-cell RNA sequencing to profile >32,000 ACs from mice of both sexes and applied computational methods to identify 63 AC types. We identified molecular markers for each type and used them to characterize the morphology of multiple types. We show that they include nearly all previously known AC types as well as many that had not been described. Consistent with previous studies, most of the AC types expressed markers for the canonical inhibitory neurotransmitters GABA or glycine, but several expressed neither or both. In addition, many expressed one or more neuropeptides, and two expressed glutamatergic markers. We also explored transcriptomic relationships among AC types and identified transcription factors expressed by individual or multiple closely related types. Noteworthy among these were Meis2 and Tcf4, expressed by most GABAergic and most glycinergic types, respectively. Together, these results provide a foundation for developmental and functional studies of ACs, as well as means for genetically accessing them. Along with previous molecular, physiological, and morphologic analyses, they establish the existence of at least 130 neuronal types and nearly 140 cell types in the mouse retina.SIGNIFICANCE STATEMENT The mouse retina is a leading model for analyzing the development, structure, function, and pathology of neural circuits. A complete molecular atlas of retinal cell types provides an important foundation for these studies. We used high-throughput single-cell RNA sequencing to characterize the most heterogeneous class of retinal interneurons, amacrine cells, identifying 63 distinct types. The atlas includes types identified previously as well as many novel types. We provide evidence for the use of multiple neurotransmitters and neuropeptides, and identify transcription factors expressed by groups of closely related types. Combining these results with those obtained previously, we proposed that the mouse retina contains ∼130 neuronal types and is therefore comparable in complexity to other regions of the brain.


Assuntos
Células Amácrinas/classificação , Retina/citologia , Células Amácrinas/metabolismo , Células Amácrinas/ultraestrutura , Animais , Feminino , Glicina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Receptores de Neurotransmissores/classificação , Receptores de Neurotransmissores/metabolismo , Retina/ultraestrutura , Fator de Transcrição 4/metabolismo , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/metabolismo
5.
Sensors (Basel) ; 20(18)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962046

RESUMO

Human activity recognition (HAR) is growing in popularity due to its wide-ranging applications in patient rehabilitation and movement disorders. HAR approaches typically start with collecting sensor data for the activities under consideration and then develop algorithms using the dataset. As such, the success of algorithms for HAR depends on the availability and quality of datasets. Most of the existing work on HAR uses data from inertial sensors on wearable devices or smartphones to design HAR algorithms. However, inertial sensors exhibit high noise that makes it difficult to segment the data and classify the activities. Furthermore, existing approaches typically do not make their data available publicly, which makes it difficult or impossible to obtain comparisons of HAR approaches. To address these issues, we present wearable HAR (w-HAR) which contains labeled data of seven activities from 22 users. Our dataset's unique aspect is the integration of data from inertial and wearable stretch sensors, thus providing two modalities of activity information. The wearable stretch sensor data allows us to create variable-length segment data and ensure that each segment contains a single activity. We also provide a HAR framework to use w-HAR to classify the activities. To this end, we first perform a design space exploration to choose a neural network architecture for activity classification. Then, we use two online learning algorithms to adapt the classifier to users whose data are not included at design time. Experiments on the w-HAR dataset show that our framework achieves 95% accuracy while the online learning algorithms improve the accuracy by as much as 40%.


Assuntos
Atividades Humanas , Dispositivos Eletrônicos Vestíveis , Algoritmos , Humanos , Redes Neurais de Computação , Smartphone
6.
PLoS Genet ; 10(2): e1004111, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516401

RESUMO

Cone-rod homeobox (CRX) protein is a "paired-like" homeodomain transcription factor that is essential for regulating rod and cone photoreceptor transcription. Mutations in human CRX are associated with the dominant retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD) and Leber Congenital Amaurosis (LCA), with variable severity. Heterozygous Crx Knock-Out (KO) mice ("+/-") have normal vision as adults and fail to model the dominant human disease. To investigate how different mutant CRX proteins produce distinct disease pathologies, we generated two Crx Knock-IN (K-IN) mouse models: Crx(E168d2) ("E168d2") and Crx(R90W) ("R90W"). E168d2 mice carry a frameshift mutation in the CRX activation domain, Glu168del2, which is associated with severe dominant CoRD or LCA in humans. R90W mice carry a substitution mutation in the CRX homeodomain, Arg90Trp, which is associated with dominant mild late-onset CoRD and recessive LCA. As seen in human patients, heterozygous E168d2 ("E168d2/+") but not R90W ("R90W/+") mice show severely impaired retinal function, while mice homozygous for either mutation are blind and undergo rapid photoreceptor degeneration. E168d2/+ mice also display abnormal rod/cone morphology, greater impairment of CRX target gene expression than R90W/+ or +/- mice, and undergo progressive photoreceptor degeneration. Surprisingly, E168d2/+ mice express more mutant CRX protein than wild-type CRX. E168d2neo/+, a subline of E168d2 with reduced mutant allele expression, displays a much milder retinal phenotype, demonstrating the impact of Crx expression level on disease severity. Both CRX([E168d2]) and CRX([R90W]) proteins fail to activate transcription in vitro, but CRX([E168d2]) interferes more strongly with the function of wild type (WT) CRX, supporting an antimorphic mechanism. E168d2 and R90W are mechanistically distinct mouse models for CRX-associated disease that will allow the elucidation of molecular mechanisms and testing of novel therapeutic approaches for different forms of CRX-associated disease.


Assuntos
Proteínas de Homeodomínio/genética , Amaurose Congênita de Leber/genética , Retinose Pigmentar/genética , Transativadores/genética , Animais , Modelos Animais de Doenças , Mutação da Fase de Leitura , Homozigoto , Humanos , Amaurose Congênita de Leber/patologia , Camundongos , Fenótipo , Células Fotorreceptoras Retinianas Cones , Degeneração Retiniana/genética , Retinose Pigmentar/patologia
7.
Dev Dyn ; 243(10): 1153-66, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24888636

RESUMO

BACKGROUND: The homeodomain transcription factor CRX is a crucial regulator of mammalian photoreceptor gene expression. Mutations in the human CRX gene are associated with dominant inherited retinopathies Retinitis Pigmentosa (RP), Cone-Rod Dystrophy (CoRD), and Leber Congenital Amaurosis (LCA), of varying severity. In vitro and in vivo assessment of mutant CRX proteins have revealed pathogenic mechanisms for several mutations, but no comprehensive mutation-disease correlation has yet been reported. RESULTS: Here we describe four different classes of disease-causing CRX mutations, characterized by mutation type, pathogenetic mechanism, and the molecular activity of the mutant protein: (1) hypomorphic missense mutations with reduced DNA binding, (2) antimorphic missense mutations with variable DNA binding, (3) antimorphic frameshift/nonsense mutations with intact DNA binding, and (4) antimorphic frameshift mutations with reduced DNA binding. Mammalian models representing three of these classes have been characterized. CONCLUSIONS: Models carrying Class I mutations display a mild dominant retinal phenotype and recessive LCA, while models carrying Class III and IV mutations display characteristically distinct dominant LCA phenotypes. These animal models also reveal unexpected pathogenic mechanisms underlying CRX-associated retinopathies. The complexity of genotype-phenotype correlation for CRX-associated diseases highlights the value of developing comprehensive "true-to-disease" animal models for understanding pathologic mechanisms and testing novel therapeutic approaches.


Assuntos
Cegueira/genética , Modelos Animais de Doenças , Proteínas de Homeodomínio/genética , Doenças Retinianas/genética , Transativadores/genética , Animais , Cegueira/patologia , Redes Reguladoras de Genes , Humanos , Camundongos , Glândula Pineal/metabolismo , Glândula Pineal/patologia , Retina/metabolismo , Retina/patologia , Doenças Retinianas/patologia
8.
iScience ; 27(6): 109916, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38812536

RESUMO

Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity by characterizing cell types across tissues and species. While several mouse retinal scRNA-seq datasets exist, each dataset is either limited in cell numbers or focused on specific cell classes, thereby hindering comprehensive gene expression analysis across all retina types. To fill the gap, we generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse retinas, enriched for rare population cells via antibody-based magnetic cell sorting. Integrating this dataset with public datasets, we constructed the Mouse Retina Cell Atlas (MRCA) for wild-type mice, encompassing over 330,000 cells, characterizing 12 major classes and 138 cell types. The MRCA consolidates existing knowledge, identifies new cell types, and is publicly accessible via CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal, providing a user-friendly resource for the mouse retina research community.

9.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712294

RESUMO

Rare cell populations can be challenging to characterize using microfluidic single-cell RNA sequencing (scRNA-seq) platforms. Typically, the population of interest must be enriched and pooled from multiple biological specimens for efficient collection. However, these practices preclude the resolution of sample origin together with phenotypic data and are problematic in experiments in which biological or technical variation is expected to be high (e.g., disease models, genetic perturbation screens, or human samples). One solution is sample multiplexing whereby each sample is tagged with a unique sequence barcode that is resolved bioinformatically. We have established a scRNA-seq sample multiplexing pipeline for mouse retinal ganglion cells using cholesterol-modified-oligos and utilized the enhanced precision to investigate cell type distribution and transcriptomic variance across retinal samples. As single cell transcriptomics are becoming more widely used to research development and disease, sample multiplexing represents a useful method to enhance the precision of scRNA-seq analysis.

10.
bioRxiv ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38328114

RESUMO

Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cellular heterogeneity at the single-cell resolution by classifying and characterizing cell types in multiple tissues and species. While several mouse retinal scRNA-seq reference datasets have been published, each dataset either has a relatively small number of cells or is focused on specific cell classes, and thus is suboptimal for assessing gene expression patterns across all retina types at the same time. To establish a unified and comprehensive reference for the mouse retina, we first generated the largest retinal scRNA-seq dataset to date, comprising approximately 190,000 single cells from C57BL/6J mouse whole retinas. This dataset was generated through the targeted enrichment of rare population cells via antibody-based magnetic cell sorting. By integrating this new dataset with public datasets, we conducted an integrated analysis to construct the Mouse Retina Cell Atlas (MRCA) for wild-type mice, which encompasses over 330,000 single cells. The MRCA characterizes 12 major classes and 138 cell types. It captured consensus cell type characterization from public datasets and identified additional new cell types. To facilitate the public use of the MRCA, we have deposited it in CELLxGENE, UCSC Cell Browser, and the Broad Single Cell Portal for visualization and gene expression exploration. The comprehensive MRCA serves as an easy-to-use, one-stop data resource for the mouse retina communities.

11.
IUCrJ ; 11(Pt 4): 620-633, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38904549

RESUMO

Here, the novel technique of extended-range high-energy-resolution fluorescence detection (XR-HERFD) has successfully observed the n = 2 satellite in manganese to a high accuracy. The significance of the satellite signature presented is many hundreds of standard errors and well beyond typical discovery levels of three to six standard errors. This satellite is a sensitive indicator for all manganese-containing materials in condensed matter. The uncertainty in the measurements has been defined, which clearly observes multiple peaks and structure indicative of complex physical quantum-mechanical processes. Theoretical calculations of energy eigenvalues, shake-off probability and Auger rates are also presented, which explain the origin of the satellite from physical n = 2 shake-off processes. The evolution in the intensity of this satellite is measured relative to the full Kα spectrum of manganese to investigate satellite structure, and therefore many-body processes, as a function of incident energy. Results demonstrate that the many-body reduction factor S02 should not be modelled with a constant value as is currently done. This work makes a significant contribution to the challenge of understanding many-body processes and interpreting HERFD or resonant inelastic X-ray scattering spectra in a quantitative manner.

12.
Circ Cardiovasc Interv ; 17(4): e013196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38626077

RESUMO

BACKGROUND: Various mitral repair techniques have been described. Though these repair techniques can be highly effective when performed correctly in suitable patients, limited quantitative biomechanical data are available. Validation and thorough biomechanical evaluation of these repair techniques from translational large animal in vivo studies in a standardized, translatable fashion are lacking. We sought to evaluate and validate biomechanical differences among different mitral repair techniques and further optimize repair operations using a large animal mitral valve prolapse model. METHODS: Male Dorset sheep (n=20) had P2 chordae severed to create the mitral valve prolapse model. Fiber Bragg grating force sensors were implanted to measure chordal forces. Ten sheep underwent 3 randomized, paired mitral valve repair operations: neochord repair, nonresectional leaflet remodeling, and triangular resection. The other 10 sheep underwent neochord repair with 2, 4, and 6 neochordae. Data were collected at baseline, mitral valve prolapse, and after each repair. RESULTS: All mitral repair techniques successfully eliminated regurgitation. Compared with mitral valve prolapse (0.54±0.18 N), repair using neochord (0.37±0.20 N; P=0.02) and remodeling techniques (0.30±0.15 N; P=0.001) reduced secondary chordae peak force. Neochord repair further decreased primary chordae peak force (0.21±0.14 N) to baseline levels (0.20±0.17 N; P=0.83), and was associated with lower primary chordae peak force compared with the remodeling (0.34±0.18 N; P=0.02) and triangular resectional techniques (0.36±0.27 N; P=0.03). Specifically, repair using 2 neochordae resulted in higher peak primary chordal forces (0.28±0.21 N) compared with those using 4 (0.22±0.16 N; P=0.02) or 6 neochordae (0.19±0.16 N; P=0.002). No difference in peak primary chordal forces was observed between 4 and 6 neochordae (P=0.05). Peak forces on the neochordae were the lowest using 6 neochordae (0.09±0.11 N) compared with those of 4 neochordae (0.15±0.14 N; P=0.01) and 2 neochordae (0.29±0.18 N; P=0.001). CONCLUSIONS: Significant biomechanical differences were observed underlying different mitral repair techniques in a translational large animal model. Neochord repair was associated with the lowest primary chordae peak force compared to the remodeling and triangular resectional techniques. Additionally, neochord repair using at least 4 neochordae was associated with lower chordal forces on the primary chordae and the neochordae. This study provided key insights about mitral valve repair optimization and may further improve repair durability.


Assuntos
Implante de Prótese de Valva Cardíaca , Insuficiência da Valva Mitral , Prolapso da Valva Mitral , Humanos , Masculino , Animais , Ovinos , Insuficiência da Valva Mitral/diagnóstico por imagem , Insuficiência da Valva Mitral/cirurgia , Prolapso da Valva Mitral/diagnóstico por imagem , Prolapso da Valva Mitral/cirurgia , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Implante de Prótese de Valva Cardíaca/métodos , Cordas Tendinosas/cirurgia , Resultado do Tratamento
13.
Methods Mol Biol ; 2636: 1-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36881292

RESUMO

A prevalent feature among neurodegenerative conditions, including axonal injury, is that certain neuronal types are disproportionately affected, while others are more resilient. Identifying molecular features that separate resilient from susceptible populations could reveal potential targets for neuroprotection and axon regeneration. A powerful approach to resolve molecular differences across cell types is single-cell RNA-sequencing (scRNA-seq). scRNA-seq is a robustly scalable approach that enables the parallel sampling of gene expression across many individual cells. Here we present a systematic framework to apply scRNA-seq to track neuronal survival and gene expression changes following axonal injury. Our methods utilize the mouse retina because it is an experimentally accessible central nervous system tissue and its cell types have been comprehensively characterized by scRNA-seq. This chapter will focus on preparing retinal ganglion cells (RGCs) for scRNA-seq and pre-processing of sequencing results.


Assuntos
Axônios , Neuroproteção , Animais , Camundongos , Neuroproteção/genética , Regeneração Nervosa/genética , Células Ganglionares da Retina , Análise de Sequência de RNA
14.
Transl Vis Sci Technol ; 12(6): 15, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37351895

RESUMO

Purpose: Mutations in the CRX transcription factor are associated with dominant retinopathies often with more severe macular changes. The CRX-mutant cat (Rdy-A182d2) is the only animal model with the equivalent of the critical retinal region for high-acuity vision, the macula. Heterozygous cats (CRXRdy/+) have a severe phenotype modeling Leber congenital amaurosis. This study reports the distinct ocular phenotype of homozygous cats (CRXRdy/Rdy). Methods: Gene expression changes were assessed at both mRNA and protein levels. Changes in globe morphology and retinal structure were analyzed. Results: CRXRdy/Rdy cats had high levels of mutant CRX mRNA and protein. The expression of photoreceptor target genes was severely impaired although there were variable effects on the expression of other transcription factors. The photoreceptor cells remained immature and failed to elaborate outer segments consistent with the lack of retinal function. The retinal layers displayed a progressive remodeling with cell loss but maintained overall retinal thickness due to gliosis. Rapid photoreceptor loss largely occurred in the macula-equivalent retinal region. The homozygous cats developed markedly increased ocular globe length. Conclusions: The phenotype of CRXRdy/Rdy cats was more severe compared to CRXRdy/+ cats by several metrics. Translational Relevance: The CRX-mutant cat is the only model for CRX-retinopathies with a macula-equivalent region. A prominent feature of the CRXRdy/Rdy cat phenotype not detectable in homozygous mouse models was the rapid degeneration of the macula-equivalent retinal region highlighting the value of this large animal model and its future importance in the testing of translational therapies aiming to restore vision.


Assuntos
Doenças Retinianas , Transativadores , Animais , Camundongos , Transativadores/genética , Proteínas de Homeodomínio/genética , Mutação , Fenótipo , RNA Mensageiro
15.
Sports Biomech ; : 1-15, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941419

RESUMO

Inertial measurement units (IMUs) represent an exciting opportunity for researchers to broaden our understanding of running-related injuries, and for clinicians to expand their application of running gait analysis. The primary aim of our study was to investigate the 1-week (short-term) and 3-month (long-term) reliability of peak resultant, vertical, and anteroposterior accelerations derived from insole-embedded IMUs. The secondary aim was to assess the reliability of peak acceleration variability and left-right limb symmetry in all directions over the short and long term. A sample of healthy adult rearfoot runners (n = 23; age 41.7 ± 11.2 years) ran at a variety of speeds (2.5 m/s, 3.0 m/s, and 3.5 m/s) on a treadmill in standardised footwear with insole-embedded IMUs in each shoe. Peak accelerations exhibited good to excellent short-term reliability and moderate to excellent long-term reliability in all directions. Peak acceleration variability showed poor to good short- and long-term reliability, whereas the symmetry of peak accelerations demonstrated moderate to excellent and moderate to good short- and long-term reliability, respectively. Our results demonstrate how insole-embedded IMUs represent a viable option for clinicians to measure peak accelerations within the clinic.

16.
bioRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034690

RESUMO

Previously we showed that neurodegeneration initiated by axonal insults depends in part on the stress-responsive kinase Perk (Larhammar et al., 2017). Here we show that Perk acts primarily through Activating Transcription Factor-4 (Atf4) to stimulate not only pro-apoptotic but also pro-regenerative responses following optic nerve injury. Using conditional knockout mice, we find an extensive Perk/Atf4-dependent transcriptional response that includes canonical Atf4 target genes and modest contributions by C/ebp homologous protein (Chop). Overlap with c-Jun-dependent transcription suggests interplay with a parallel stress pathway that couples regenerative and apoptotic responses. Accordingly, neuronal knockout of Atf4 recapitulates the neuroprotection afforded by Perk deficiency, and Perk or Atf4 knockout impairs optic axon regeneration enabled by disrupting the tumor suppressor Pten. These findings contrast with the transcriptional and functional consequences reported for CRISPR targeting of Atf4 or Chop and reveal an integral role for Perk/Atf4 in coordinating neurodegenerative and regenerative responses to CNS axon injury.

17.
Res Sq ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014002

RESUMO

Single-cell sequencing has revolutionized the scale and resolution of molecular profiling of tissues and organs. Here, we present an integrated multimodal reference atlas of the most accessible portion of the mammalian central nervous system, the retina. We compiled around 2.4 million cells from 55 donors, including 1.4 million unpublished data points, to create a comprehensive human retina cell atlas (HRCA) of transcriptome and chromatin accessibility, unveiling over 110 types. Engaging the retina community, we annotated each cluster, refined the Cell Ontology for the retina, identified distinct marker genes, and characterized cis-regulatory elements and gene regulatory networks (GRNs) for these cell types. Our analysis uncovered intriguing differences in transcriptome, chromatin, and GRNs across cell types. In addition, we modeled changes in gene expression and chromatin openness across gender and age. This integrated atlas also enabled the fine-mapping of GWAS and eQTL variants. Accessible through interactive browsers, this multimodal cross-donor and cross-lab HRCA, can facilitate a better understanding of retinal function and pathology.

18.
J Biol Chem ; 286(42): 36921-31, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21865162

RESUMO

The transcription factor neural retina leucine zipper (Nrl) is a critical determinant of rod photoreceptor cell fate and a key regulator of rod differentiation. Nrl(-/-) rod precursors fail to turn on rod genes and instead differentiate as cones. Furthermore, NRL mutations in humans cause retinitis pigmentosa. Despite the developmental and clinical significance of this gene, little is known about the transcriptional regulation of Nrl itself. In this study, we sought to define the cis- and trans-acting factors responsible for initiation and maintenance of Nrl transcription in the mouse retina. Utilizing a quantitative mouse retinal explant electroporation assay, we discovered a phylogenetically conserved, 30-base pair region immediately upstream of the transcription start site that is required for Nrl promoter activity. This region contains binding sites for the retinal transcription factors CRX, OTX2, and RORß, and point mutations in these sites completely abolish promoter activity in living retinas. Gel-shift experiments show that CRX, OTX2, and RORß can bind to the critical region in vitro, whereas ChIP experiments demonstrate binding of CRX and OTX2 to the critical region in vivo. Thus, our results indicate that CRX, OTX2, and RORß directly regulate Nrl transcription by binding to critical sites within the Nrl promoter. We propose a model in which Nrl expression is primarily initiated by OTX2 and RORß and later maintained at high levels by CRX and RORß.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/biossíntese , Proteínas do Olho/metabolismo , Modelos Biológicos , Elementos de Resposta/fisiologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Transcrição Gênica/fisiologia , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Diferenciação Celular/fisiologia , Proteínas do Olho/biossíntese , Proteínas do Olho/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Mutação Puntual , Células Fotorreceptoras Retinianas Bastonetes/citologia
19.
Front Sports Act Living ; 4: 802019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308593

RESUMO

Introduction: Running-related injuries (RRIs) occur from a combination of training load errors and aberrant biomechanics. Impact loading, measured by peak acceleration, is an important measure of running biomechanics that is related to RRI. Foot strike patterns may moderate the magnitude of impact load in runners. The effect of foot strike pattern on peak acceleration has been measured using tibia-mounted inertial measurement units (IMUs), but not commercially available insole-embedded IMUs. The aim of this study was to compare the peak acceleration signal associated with rearfoot (RFS), midfoot (MFS), and forefoot (FFS) strike patterns when measured with an insole-embedded IMU. Materials and Methods: Healthy runners ran on a treadmill for 1 min at three different speeds with their habitual foot strike pattern. An insole-embedded IMU was placed inside standardized neutral cushioned shoes to measure the peak resultant, vertical, and anteroposterior accelerations at impact. The Foot strike pattern was determined by two experienced observers and evaluated using high-speed video. Linear effect mixed-effect models were used to quantify the relationship between foot strike pattern and peak resultant, vertical, and anteroposterior acceleration. Results: A total of 81% of the 187 participants exhibited an RFS pattern. An RFS pattern was associated with a higher peak resultant (0.29 SDs; p = 0.029) and vertical (1.19 SD; p < 0.001) acceleration when compared with an FFS running pattern, when controlling for speed and limb, respectively. However, an MFS was associated with the highest peak accelerations in the resultant direction (0.91 SD vs. FFS; p = 0.002 and 0.17 SD vs. RFS; p = 0.091). An FFS pattern was associated with the lowest peak accelerations in both the resultant and vertical directions. An RFS was also associated with a significantly greater peak acceleration in the anteroposterior direction (0.28 SD; p = 0.033) than an FFS pattern, while there was no difference between MFS and FFS patterns. Conclusion: Our findings indicate that runners should be grouped by RFS, MFS, and FFS when comparing peak acceleration, rather than the common practice of grouping MFS and FFS together as non-RFS runners. Future studies should aim to determine the risk of RRI associated with peak accelerations from an insole-embedded IMU to understand whether the small observed differences in this study are clinically meaningful.

20.
Neuron ; 110(16): 2625-2645.e7, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35767994

RESUMO

Injured neurons in the adult mammalian central nervous system often die and seldom regenerate axons. To uncover transcriptional pathways that could ameliorate these disappointing responses, we analyzed three interventions that increase survival and regeneration of mouse retinal ganglion cells (RGCs) following optic nerve crush (ONC) injury, albeit not to a clinically useful extent. We assessed gene expression in each of 46 RGC types by single-cell transcriptomics following ONC and treatment. We also compared RGCs that regenerated with those that survived but did not regenerate. Each intervention enhanced survival of most RGC types, but type-independent axon regeneration required manipulation of multiple pathways. Distinct computational methods converged on separate sets of genes selectively expressed by RGCs likely to be dying, surviving, or regenerating. Overexpression of genes associated with the regeneration program enhanced both survival and axon regeneration in vivo, indicating that mechanistic analysis can be used to identify novel therapeutic strategies.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Animais , Axônios/metabolismo , Sobrevivência Celular/genética , Mamíferos , Camundongos , Regeneração Nervosa/genética , Traumatismos do Nervo Óptico/genética , Traumatismos do Nervo Óptico/metabolismo , Células Ganglionares da Retina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA