Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Infect Dis ; 74(3): 490-497, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33978720

RESUMO

BACKGROUND: Cruise travel contributed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission when there were relatively few cases in the United States. By 14 March 2020, the Centers for Disease Control and Prevention (CDC) issued a No Sail Order suspending US cruise operations; the last US passenger ship docked on 16 April. METHODS: We analyzed SARS-CoV-2 outbreaks on cruises in US waters or carrying US citizens and used regression models to compare voyage characteristics. We used compartmental models to simulate the potential impact of 4 interventions (screening for coronavirus disease 2019 (COVID-19) symptoms; viral testing on 2 days and isolation of positive persons; reduction of passengers by 40%, crew by 20%, and reducing port visits to 1) for 7-day and 14-day voyages. RESULTS: During 19 January to 16 April 2020, 89 voyages on 70 ships had known SARS-CoV-2 outbreaks; 16 ships had recurrent outbreaks. There were 1669 reverse transcription polymerase chain reaction (RT-PCR)-confirmed SARS-CoV-2 infections and 29 confirmed deaths. Longer voyages were associated with more cases (adjusted incidence rate ratio, 1.10, 95% confidence interval [CI]: 1.03-1.17, P < .003). Mathematical models showed that 7-day voyages had about 70% fewer cases than 14-day voyages. On 7-day voyages, the most effective interventions were reducing the number of individuals onboard (43.3% reduction in total infections) and testing passengers and crew (42% reduction in total infections). All four interventions reduced transmission by 80.1%, but no single intervention or combination eliminated transmission. Results were similar for 14-day voyages. CONCLUSIONS: SARS-CoV-2 outbreaks on cruises were common during January-April 2020. Despite all interventions modeled, cruise travel still poses a significant SARS-CoV-2 transmission risk.


Assuntos
COVID-19 , Surtos de Doenças , Humanos , Saúde Pública , SARS-CoV-2 , Navios , Viagem , Estados Unidos/epidemiologia
2.
Emerg Infect Dis ; 26(8): 1731-1739, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32511090

RESUMO

CrAssphage is a recently discovered human gut-associated bacteriophage. To validate the potential use of crAssphage for detecting human fecal contamination on environmental surfaces and hands, we tested stool samples (n = 60), hand samples (n = 30), and environmental swab samples (n = 201) from 17 norovirus outbreaks for crAssphage by real-time PCR. In addition, we tested stool samples from healthy persons (n = 173), respiratory samples (n = 113), and animal fecal specimens (n = 68) and further sequenced positive samples. Overall, we detected crAssphage in 71.4% of outbreak stool samples, 48%-68.5% of stool samples from healthy persons, 56.2% of environmental swabs, and 60% of hand rinse samples, but not in human respiratory samples or animal fecal samples. CrAssphage sequences could be grouped into 2 major genetic clusters. Our data suggest that crAssphage could be used to detect human fecal contamination on environmental surfaces and hands.


Assuntos
Bacteriófagos , Infecções por Caliciviridae , Norovirus , Animais , Infecções por Caliciviridae/epidemiologia , Surtos de Doenças , Fezes , Humanos , Reação em Cadeia da Polimerase em Tempo Real
3.
Appl Environ Microbiol ; 81(17): 5987-92, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116675

RESUMO

Inanimate surfaces are regarded as key vehicles for the spread of human norovirus during outbreaks. ISO method 15216 involves the use of cotton swabs for environmental sampling from food surfaces and fomites for the detection of norovirus genogroup I (GI) and GII. We evaluated the effects of the virus drying time (1, 8, 24, or 48 h), swab material (cotton, polyester, rayon, macrofoam, or an antistatic wipe), surface (stainless steel or a toilet seat), and area of the swabbed surface (25.8 cm(2) to 645.0 cm(2)) on the recovery of human norovirus. Macrofoam swabs produced the highest rate of recovery of norovirus from surfaces as large as 645 cm(2). The rates of recovery ranged from 2.2 to 36.0% for virus seeded on stainless-steel coupons (645.0 cm(2)) to 1.2 to 33.6% for toilet seat surfaces (700 cm(2)), with detection limits of 3.5 log10 and 4.0 log10 RNA copies. We used macrofoam swabs to collect environmental samples from several case cabins and common areas of a cruise ship where passengers had reported viral gastroenteritis symptoms. Seventeen (18.5%) of 92 samples tested positive for norovirus GII, and 4 samples could be sequenced and had identical GII.1 sequences. The viral loads of the swab samples from the cabins of the sick passengers ranged from 80 to 31,217 RNA copies, compared with 16 to 113 RNA copies for swab samples from public spaces. In conclusion, our swab protocol for norovirus may be a useful tool for outbreak investigations when no clinical samples are available to confirm the etiology.


Assuntos
Fômites/virologia , Norovirus/isolamento & purificação , Virologia/métodos , Infecções por Caliciviridae/virologia , Contaminação de Equipamentos , Humanos , Norovirus/classificação , Norovirus/genética , RNA Viral/genética , Aço Inoxidável/análise , Virologia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA